广义低秩更新:低秩训练数据修改的模型参数界。

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computation Pub Date : 2023-11-07 DOI:10.1162/neco_a_01619
Hiroyuki Hanada;Noriaki Hashimoto;Kouichi Taji;Ichiro Takeuchi
{"title":"广义低秩更新:低秩训练数据修改的模型参数界。","authors":"Hiroyuki Hanada;Noriaki Hashimoto;Kouichi Taji;Ichiro Takeuchi","doi":"10.1162/neco_a_01619","DOIUrl":null,"url":null,"abstract":"In this study, we have developed an incremental machine learning (ML) method that efficiently obtains the optimal model when a small number of instances or features are added or removed. This problem holds practical importance in model selection, such as cross-validation (CV) and feature selection. Among the class of ML methods known as linear estimators, there exists an efficient model update framework, the low-rank update, that can effectively handle changes in a small number of rows and columns within the data matrix. However, for ML methods beyond linear estimators, there is currently no comprehensive framework available to obtain knowledge about the updated solution within a specific computational complexity. In light of this, our study introduces a the generalized low-rank update (GLRU) method, which extends the low-rank update framework of linear estimators to ML methods formulated as a certain class of regularized empirical risk minimization, including commonly used methods such as support vector machines and logistic regression. The proposed GLRU method not only expands the range of its applicability but also provides information about the updated solutions with a computational complexity proportional to the number of data set changes. To demonstrate the effectiveness of the GLRU method, we conduct experiments showcasing its efficiency in performing cross-validation and feature selection compared to other baseline methods.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Low-Rank Update: Model Parameter Bounds for Low-Rank Training Data Modifications\",\"authors\":\"Hiroyuki Hanada;Noriaki Hashimoto;Kouichi Taji;Ichiro Takeuchi\",\"doi\":\"10.1162/neco_a_01619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we have developed an incremental machine learning (ML) method that efficiently obtains the optimal model when a small number of instances or features are added or removed. This problem holds practical importance in model selection, such as cross-validation (CV) and feature selection. Among the class of ML methods known as linear estimators, there exists an efficient model update framework, the low-rank update, that can effectively handle changes in a small number of rows and columns within the data matrix. However, for ML methods beyond linear estimators, there is currently no comprehensive framework available to obtain knowledge about the updated solution within a specific computational complexity. In light of this, our study introduces a the generalized low-rank update (GLRU) method, which extends the low-rank update framework of linear estimators to ML methods formulated as a certain class of regularized empirical risk minimization, including commonly used methods such as support vector machines and logistic regression. The proposed GLRU method not only expands the range of its applicability but also provides information about the updated solutions with a computational complexity proportional to the number of data set changes. To demonstrate the effectiveness of the GLRU method, we conduct experiments showcasing its efficiency in performing cross-validation and feature selection compared to other baseline methods.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10355114/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10355114/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们开发了一种增量机器学习(ML)方法,当添加或删除少量实例或特征时,该方法可以有效地获得最优模型。这个问题在模型选择中具有实际意义,例如交叉验证(CV)和特征选择。在被称为线性估计量的ML方法中,存在一种高效的模型更新框架,即低秩更新,它可以有效地处理数据矩阵中少量行和列的变化。然而,对于线性估计量之外的ML方法,目前还没有一个全面的框架可以在特定的计算复杂度内获得关于更新解决方案的知识。有鉴于此,我们的研究引入了一种广义低秩更新(GLRU)方法,该方法将线性估计量的低秩更新框架扩展到ML方法,该ML方法被公式化为一类正则化经验风险最小化,包括常用的方法,如支持向量机和逻辑回归。所提出的GLRU方法不仅扩大了其适用范围,而且还提供了关于更新的解决方案的信息,其计算复杂度与数据集变化的数量成比例。为了证明GLRU方法的有效性,我们进行了实验,展示了与其他基线方法相比,GLRU方法在执行交叉验证和特征选择方面的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized Low-Rank Update: Model Parameter Bounds for Low-Rank Training Data Modifications
In this study, we have developed an incremental machine learning (ML) method that efficiently obtains the optimal model when a small number of instances or features are added or removed. This problem holds practical importance in model selection, such as cross-validation (CV) and feature selection. Among the class of ML methods known as linear estimators, there exists an efficient model update framework, the low-rank update, that can effectively handle changes in a small number of rows and columns within the data matrix. However, for ML methods beyond linear estimators, there is currently no comprehensive framework available to obtain knowledge about the updated solution within a specific computational complexity. In light of this, our study introduces a the generalized low-rank update (GLRU) method, which extends the low-rank update framework of linear estimators to ML methods formulated as a certain class of regularized empirical risk minimization, including commonly used methods such as support vector machines and logistic regression. The proposed GLRU method not only expands the range of its applicability but also provides information about the updated solutions with a computational complexity proportional to the number of data set changes. To demonstrate the effectiveness of the GLRU method, we conduct experiments showcasing its efficiency in performing cross-validation and feature selection compared to other baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
期刊最新文献
Associative Learning and Active Inference. Deep Nonnegative Matrix Factorization with Beta Divergences. KLIF: An Optimized Spiking Neuron Unit for Tuning Surrogate Gradient Function. ℓ 1 -Regularized ICA: A Novel Method for Analysis of Task-Related fMRI Data. Latent Space Bayesian Optimization With Latent Data Augmentation for Enhanced Exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1