Nusrat Tazin , Christopher Jordon Lambert , Raheel Samuel , Tamara J. Stevenson , Joshua L. Bonkowsky , Bruce K. Gale
{"title":"电穿孔和显微注射在具有完整绒毛膜的斑马鱼胚胎中的转基因表达","authors":"Nusrat Tazin , Christopher Jordon Lambert , Raheel Samuel , Tamara J. Stevenson , Joshua L. Bonkowsky , Bruce K. Gale","doi":"10.1016/j.btre.2023.e00814","DOIUrl":null,"url":null,"abstract":"<div><p>Electroporation is regularly used to deliver agents into cells, including transgenic materials, but it is not used for mutating zebrafish embryos due to the lack of suitable systems, information on appropriate operating parameters, and the challenges posed by the protective chorion. Here, a novel method for gene delivery in zebrafish embryos was developed by combining microinjection into the space between the chorion and the embryo followed by electroporation. This method eliminates the need for chorion removal and injecting into the space between the chorion and embryo eliminates the need for finding and identifying key cell locations before performing an injection, making the process much simpler and more automatable. We also developed a microfluidic electroporation system and optimized electric pulse parameters for transgenesis of embryos. The study provided a novel method for gene delivery in zebrafish embryos that can be potentially implemented in a high throughput transgenesis or mutagenesis system.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"40 ","pages":"Article e00814"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/ac/main.PMC10569972.pdf","citationCount":"0","resultStr":"{\"title\":\"Transgenic expression in zebrafish embryos with an intact chorion by electroporation and microinjection\",\"authors\":\"Nusrat Tazin , Christopher Jordon Lambert , Raheel Samuel , Tamara J. Stevenson , Joshua L. Bonkowsky , Bruce K. Gale\",\"doi\":\"10.1016/j.btre.2023.e00814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electroporation is regularly used to deliver agents into cells, including transgenic materials, but it is not used for mutating zebrafish embryos due to the lack of suitable systems, information on appropriate operating parameters, and the challenges posed by the protective chorion. Here, a novel method for gene delivery in zebrafish embryos was developed by combining microinjection into the space between the chorion and the embryo followed by electroporation. This method eliminates the need for chorion removal and injecting into the space between the chorion and embryo eliminates the need for finding and identifying key cell locations before performing an injection, making the process much simpler and more automatable. We also developed a microfluidic electroporation system and optimized electric pulse parameters for transgenesis of embryos. The study provided a novel method for gene delivery in zebrafish embryos that can be potentially implemented in a high throughput transgenesis or mutagenesis system.</p></div>\",\"PeriodicalId\":38117,\"journal\":{\"name\":\"Biotechnology Reports\",\"volume\":\"40 \",\"pages\":\"Article e00814\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/ac/main.PMC10569972.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215017X23000346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X23000346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Transgenic expression in zebrafish embryos with an intact chorion by electroporation and microinjection
Electroporation is regularly used to deliver agents into cells, including transgenic materials, but it is not used for mutating zebrafish embryos due to the lack of suitable systems, information on appropriate operating parameters, and the challenges posed by the protective chorion. Here, a novel method for gene delivery in zebrafish embryos was developed by combining microinjection into the space between the chorion and the embryo followed by electroporation. This method eliminates the need for chorion removal and injecting into the space between the chorion and embryo eliminates the need for finding and identifying key cell locations before performing an injection, making the process much simpler and more automatable. We also developed a microfluidic electroporation system and optimized electric pulse parameters for transgenesis of embryos. The study provided a novel method for gene delivery in zebrafish embryos that can be potentially implemented in a high throughput transgenesis or mutagenesis system.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.