基于多尺度通道注意力的轻型癫痫检测。

International journal of neural systems Pub Date : 2023-12-01 Epub Date: 2023-10-17 DOI:10.1142/S0129065723500612
Ziwei Wang, Sujuan Hou, Tiantian Xiao, Yongfeng Zhang, Hongbin Lv, Jiacheng Li, Shanshan Zhao, Yanna Zhao
{"title":"基于多尺度通道注意力的轻型癫痫检测。","authors":"Ziwei Wang, Sujuan Hou, Tiantian Xiao, Yongfeng Zhang, Hongbin Lv, Jiacheng Li, Shanshan Zhao, Yanna Zhao","doi":"10.1142/S0129065723500612","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is one kind of neurological disease characterized by recurring seizures. Recurrent seizures can cause ongoing negative mental and cognitive damage to the patient. Therefore, timely diagnosis and treatment of epilepsy are crucial for patients. Manual electroencephalography (EEG) signals analysis is time and energy consuming, making automatic detection using EEG signals particularly important. Many deep learning algorithms have thus been proposed to detect seizures. These methods rely on expensive and bulky hardware, which makes them unsuitable for deployment on devices with limited resources due to their high demands on computer resources. In this paper, we propose a novel lightweight neural network for seizure detection using pure convolutions, which is composed of inverted residual structure and multi-scale channel attention mechanism. Compared with other methods, our approach significantly reduces the computational complexity, making it possible to deploy on low-cost portable devices for seizures detection. We conduct experiments on the CHB-MIT dataset and achieves 98.7% accuracy, 98.3% sensitivity and 99.1% specificity with 2.68[Formula: see text]M multiply-accumulate operations (MACs) and only 88[Formula: see text]K parameters.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2350061"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Seizure Detection Based on Multi-Scale Channel Attention.\",\"authors\":\"Ziwei Wang, Sujuan Hou, Tiantian Xiao, Yongfeng Zhang, Hongbin Lv, Jiacheng Li, Shanshan Zhao, Yanna Zhao\",\"doi\":\"10.1142/S0129065723500612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epilepsy is one kind of neurological disease characterized by recurring seizures. Recurrent seizures can cause ongoing negative mental and cognitive damage to the patient. Therefore, timely diagnosis and treatment of epilepsy are crucial for patients. Manual electroencephalography (EEG) signals analysis is time and energy consuming, making automatic detection using EEG signals particularly important. Many deep learning algorithms have thus been proposed to detect seizures. These methods rely on expensive and bulky hardware, which makes them unsuitable for deployment on devices with limited resources due to their high demands on computer resources. In this paper, we propose a novel lightweight neural network for seizure detection using pure convolutions, which is composed of inverted residual structure and multi-scale channel attention mechanism. Compared with other methods, our approach significantly reduces the computational complexity, making it possible to deploy on low-cost portable devices for seizures detection. We conduct experiments on the CHB-MIT dataset and achieves 98.7% accuracy, 98.3% sensitivity and 99.1% specificity with 2.68[Formula: see text]M multiply-accumulate operations (MACs) and only 88[Formula: see text]K parameters.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2350061\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065723500612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065723500612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癫痫是一种以反复发作为特征的神经系统疾病。反复发作会对患者造成持续的负面精神和认知损伤。因此,癫痫的及时诊断和治疗对患者来说至关重要。手工脑电图(EEG)信号分析耗时耗能,使得利用EEG信号进行自动检测尤为重要。因此,已经提出了许多深度学习算法来检测癫痫发作。这些方法依赖于昂贵且庞大的硬件,这使得它们由于对计算机资源的高需求而不适合部署在资源有限的设备上。在本文中,我们提出了一种新的轻量级神经网络,用于使用纯卷积的癫痫检测,该网络由倒置残差结构和多尺度通道注意机制组成。与其他方法相比,我们的方法显著降低了计算复杂性,使其能够部署在低成本的便携式设备上进行癫痫发作检测。我们在CHB-MIT数据集上进行了实验,获得了98.7%的准确率、98.3%的灵敏度和99.1%的特异性,参数为2.68[公式:见正文]M乘累加运算(MAC)和仅88[公式:参见正文]K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lightweight Seizure Detection Based on Multi-Scale Channel Attention.

Epilepsy is one kind of neurological disease characterized by recurring seizures. Recurrent seizures can cause ongoing negative mental and cognitive damage to the patient. Therefore, timely diagnosis and treatment of epilepsy are crucial for patients. Manual electroencephalography (EEG) signals analysis is time and energy consuming, making automatic detection using EEG signals particularly important. Many deep learning algorithms have thus been proposed to detect seizures. These methods rely on expensive and bulky hardware, which makes them unsuitable for deployment on devices with limited resources due to their high demands on computer resources. In this paper, we propose a novel lightweight neural network for seizure detection using pure convolutions, which is composed of inverted residual structure and multi-scale channel attention mechanism. Compared with other methods, our approach significantly reduces the computational complexity, making it possible to deploy on low-cost portable devices for seizures detection. We conduct experiments on the CHB-MIT dataset and achieves 98.7% accuracy, 98.3% sensitivity and 99.1% specificity with 2.68[Formula: see text]M multiply-accumulate operations (MACs) and only 88[Formula: see text]K parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online and Cross-User Finger Movement Pattern Recognition by Decoding Neural Drive Information from Surface Electromyogram. Architecture Knowledge Distillation for Evolutionary Generative Adversarial Network. Minimal Neural Network Conditions for Encoding Future Interactions. Frequency-Assisted Local Attention in Lower Layers of Visual Transformers. End-User Confidence in Artificial Intelligence-Based Predictions Applied to Biomedical Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1