{"title":"扩展系统中非线性光学的动态berry相位法的Floquet公式","authors":"Ignacio M. Alliati, M. Grüning","doi":"10.1088/2516-1075/acbc5e","DOIUrl":null,"url":null,"abstract":"We present a Floquet scheme for the ab-initio calculation of nonlinear optical properties in extended systems. This entails a reformulation of the real-time approach based on the dynamical Berry-phase polarisation (Attaccalite and Grüning 2013 Phys. Rev. B 88 1–9) and retains the advantage of being non-perturbative in the electric field. The proposed method applies to periodically-driven Hamiltonians and makes use of this symmetry to turn a time-dependent problem into a self-consistent time-independent eigenvalue problem. We implemented this Floquet scheme at the independent particle level and compared it with the real-time approach. Our reformulation reproduces real-time-calculated 2nd and 3rd order susceptibilities for a number of bulk and two-dimensional materials, while reducing the associated computational cost by one or two orders of magnitude.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Floquet formulation of the dynamical Berry-phase approach to nonlinear optics in extended systems\",\"authors\":\"Ignacio M. Alliati, M. Grüning\",\"doi\":\"10.1088/2516-1075/acbc5e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a Floquet scheme for the ab-initio calculation of nonlinear optical properties in extended systems. This entails a reformulation of the real-time approach based on the dynamical Berry-phase polarisation (Attaccalite and Grüning 2013 Phys. Rev. B 88 1–9) and retains the advantage of being non-perturbative in the electric field. The proposed method applies to periodically-driven Hamiltonians and makes use of this symmetry to turn a time-dependent problem into a self-consistent time-independent eigenvalue problem. We implemented this Floquet scheme at the independent particle level and compared it with the real-time approach. Our reformulation reproduces real-time-calculated 2nd and 3rd order susceptibilities for a number of bulk and two-dimensional materials, while reducing the associated computational cost by one or two orders of magnitude.\",\"PeriodicalId\":42419,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/acbc5e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/acbc5e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Floquet formulation of the dynamical Berry-phase approach to nonlinear optics in extended systems
We present a Floquet scheme for the ab-initio calculation of nonlinear optical properties in extended systems. This entails a reformulation of the real-time approach based on the dynamical Berry-phase polarisation (Attaccalite and Grüning 2013 Phys. Rev. B 88 1–9) and retains the advantage of being non-perturbative in the electric field. The proposed method applies to periodically-driven Hamiltonians and makes use of this symmetry to turn a time-dependent problem into a self-consistent time-independent eigenvalue problem. We implemented this Floquet scheme at the independent particle level and compared it with the real-time approach. Our reformulation reproduces real-time-calculated 2nd and 3rd order susceptibilities for a number of bulk and two-dimensional materials, while reducing the associated computational cost by one or two orders of magnitude.