Soumaya Lamrharia, Hamid Elghazi, Abdellatif El Faker
{"title":"使用fuzzy-Kano模型的商业智能","authors":"Soumaya Lamrharia, Hamid Elghazi, Abdellatif El Faker","doi":"10.37380/jisib.v9i2.468","DOIUrl":null,"url":null,"abstract":"Today, understanding customer satisfaction is becoming a difficult and complex task for companies due to the explosive growth of the voice of the customer in online reviews. This has pushed companies to rethink their business strategies and resort to business intelligence techniques in order to help them in analyzing customer requirements and market trends. This paper proposes a decision support framework for dynamically transforming the voice of the customer data into actionable insight. The framework measures the customer satisfaction by extracting key products’ aspects along with customers’ sentiments from online reviews using a text mining technique: the latent Dirichlet allocation approach. We apply the Fuzzy-Kano model to classify the real customer requirements, then, map them dynamically to the SWOT matrix. The proposed approach is extensively tested on an empirical dataset based on several performance metrics including accuracy, precision, recall, and F-score. The reported results showed that latent Dirichlet allocation approach has correctly extracted aspects with 97.4% accuracy and 92.4 % precision.","PeriodicalId":43580,"journal":{"name":"Journal of Intelligence Studies in Business","volume":"139 5-6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Business intelligence using the fuzzy-Kano model\",\"authors\":\"Soumaya Lamrharia, Hamid Elghazi, Abdellatif El Faker\",\"doi\":\"10.37380/jisib.v9i2.468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, understanding customer satisfaction is becoming a difficult and complex task for companies due to the explosive growth of the voice of the customer in online reviews. This has pushed companies to rethink their business strategies and resort to business intelligence techniques in order to help them in analyzing customer requirements and market trends. This paper proposes a decision support framework for dynamically transforming the voice of the customer data into actionable insight. The framework measures the customer satisfaction by extracting key products’ aspects along with customers’ sentiments from online reviews using a text mining technique: the latent Dirichlet allocation approach. We apply the Fuzzy-Kano model to classify the real customer requirements, then, map them dynamically to the SWOT matrix. The proposed approach is extensively tested on an empirical dataset based on several performance metrics including accuracy, precision, recall, and F-score. The reported results showed that latent Dirichlet allocation approach has correctly extracted aspects with 97.4% accuracy and 92.4 % precision.\",\"PeriodicalId\":43580,\"journal\":{\"name\":\"Journal of Intelligence Studies in Business\",\"volume\":\"139 5-6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligence Studies in Business\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37380/jisib.v9i2.468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligence Studies in Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37380/jisib.v9i2.468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
Today, understanding customer satisfaction is becoming a difficult and complex task for companies due to the explosive growth of the voice of the customer in online reviews. This has pushed companies to rethink their business strategies and resort to business intelligence techniques in order to help them in analyzing customer requirements and market trends. This paper proposes a decision support framework for dynamically transforming the voice of the customer data into actionable insight. The framework measures the customer satisfaction by extracting key products’ aspects along with customers’ sentiments from online reviews using a text mining technique: the latent Dirichlet allocation approach. We apply the Fuzzy-Kano model to classify the real customer requirements, then, map them dynamically to the SWOT matrix. The proposed approach is extensively tested on an empirical dataset based on several performance metrics including accuracy, precision, recall, and F-score. The reported results showed that latent Dirichlet allocation approach has correctly extracted aspects with 97.4% accuracy and 92.4 % precision.
期刊介绍:
The Journal of Intelligence Studies in Business (JISIB) is a double blinded peer reviewed open access journal published by Halmstad University, Sweden. Its mission is to help facilitate and publish original research, conference proceedings and book reviews. The journal includes articles within areas such as Competitive Intelligence, Business Intelligence, Market Intelligence, Scientific and Technical Intelligence, Collective Intelligence and Geo-economics. This means that the journal has a managerial as well as an applied technical side (Information Systems), as these are now well integrated in real life Business Intelligence solutions. By focusing on business applications the journal do not compete directly with journals of Library Sciences or State or Military Intelligence Studies. Topics within the selected study areas should show clear practical implications.