热扩散对电子器件浸没冷却介质液体沸腾影响的数值和参数研究

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Packaging Pub Date : 2021-12-20 DOI:10.1115/1.4053310
W. Tong, Alireza Ganjali, Omidreza Ghaffari, Chady Alsayed, L. Fréchette, J. Sylvestre
{"title":"热扩散对电子器件浸没冷却介质液体沸腾影响的数值和参数研究","authors":"W. Tong, Alireza Ganjali, Omidreza Ghaffari, Chady Alsayed, L. Fréchette, J. Sylvestre","doi":"10.1115/1.4053310","DOIUrl":null,"url":null,"abstract":"\n In a two-phase immersion cooling system, boiling on the spreader surface has been experimentally found to be non-uniform, and it is highly related to the surface temperature and the heat transfer coefficient. An experimentally obtained temperature-dependent boiling heat transfer coefficient has been applied to a numerical model to investigate the spreader's cooling performance. It is found that the surface temperature distribution becomes less uniform with higher input power. But it is more uniform when the thickness is increased. By defining the characteristic temperatures that represent different boiling regimes on the surface, the fraction of the surface area that has reached the critical heat flux has been numerically calculated, showing that increasing the thickness from 1 mm to 6 mm decreases the critical heat flux reached area by 23% at saturation liquid temperatures. Therefore, on the thicker spreader, more of the surface is utilized for nucleate boiling while localized hot regions that lead to surface dry-out are avoided. At a base temperature of 90 oC, the optimal thickness is found to be 4 mm, beyond which no significant improvement in heat removal can be obtained. Lower coolant temperatures can further increase the heat removal; it is reduced from an 18% improvement in the input power for the 1 mm case to only 3% in the 6 mm case for a coolant temperature drop of 24 oC. Therefore, a trade-off exists between the cost of maintaining the low liquid temperature and the increased heat removal capacity.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":"61 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical and Parametric Investigation of the Effect of Heat Spreading On Boiling of a Dielectric Liquid for Immersion Cooling of Electronics\",\"authors\":\"W. Tong, Alireza Ganjali, Omidreza Ghaffari, Chady Alsayed, L. Fréchette, J. Sylvestre\",\"doi\":\"10.1115/1.4053310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In a two-phase immersion cooling system, boiling on the spreader surface has been experimentally found to be non-uniform, and it is highly related to the surface temperature and the heat transfer coefficient. An experimentally obtained temperature-dependent boiling heat transfer coefficient has been applied to a numerical model to investigate the spreader's cooling performance. It is found that the surface temperature distribution becomes less uniform with higher input power. But it is more uniform when the thickness is increased. By defining the characteristic temperatures that represent different boiling regimes on the surface, the fraction of the surface area that has reached the critical heat flux has been numerically calculated, showing that increasing the thickness from 1 mm to 6 mm decreases the critical heat flux reached area by 23% at saturation liquid temperatures. Therefore, on the thicker spreader, more of the surface is utilized for nucleate boiling while localized hot regions that lead to surface dry-out are avoided. At a base temperature of 90 oC, the optimal thickness is found to be 4 mm, beyond which no significant improvement in heat removal can be obtained. Lower coolant temperatures can further increase the heat removal; it is reduced from an 18% improvement in the input power for the 1 mm case to only 3% in the 6 mm case for a coolant temperature drop of 24 oC. Therefore, a trade-off exists between the cost of maintaining the low liquid temperature and the increased heat removal capacity.\",\"PeriodicalId\":15663,\"journal\":{\"name\":\"Journal of Electronic Packaging\",\"volume\":\"61 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Packaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4053310\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4053310","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

在两相浸没冷却系统中,实验发现散热器表面的沸腾是不均匀的,它与表面温度和传热系数高度相关。实验获得的与温度相关的沸腾传热系数已应用于数值模型,以研究散热器的冷却性能。研究发现,输入功率越大,表面温度分布越不均匀。但是当厚度增加时,它更均匀。通过定义代表表面上不同沸腾状态的特征温度,已经对达到临界热通量的表面积的分数进行了数值计算,表明在饱和液体温度下,将厚度从1mm增加到6mm将使达到临界热流量的面积减少23%。因此,在较厚的扩散器上,更多的表面用于成核沸腾,同时避免了导致表面干燥的局部热区。在90℃的基本温度下,发现最佳厚度为4 mm,超过该厚度,在除热方面无法获得显著改善。较低的冷却液温度可以进一步增加散热;在冷却剂温度下降24℃的情况下,其输入功率从1mm情况下的18%提高到6mm情况下的仅3%。因此,在维持低液体温度的成本和增加的排热能力之间存在权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical and Parametric Investigation of the Effect of Heat Spreading On Boiling of a Dielectric Liquid for Immersion Cooling of Electronics
In a two-phase immersion cooling system, boiling on the spreader surface has been experimentally found to be non-uniform, and it is highly related to the surface temperature and the heat transfer coefficient. An experimentally obtained temperature-dependent boiling heat transfer coefficient has been applied to a numerical model to investigate the spreader's cooling performance. It is found that the surface temperature distribution becomes less uniform with higher input power. But it is more uniform when the thickness is increased. By defining the characteristic temperatures that represent different boiling regimes on the surface, the fraction of the surface area that has reached the critical heat flux has been numerically calculated, showing that increasing the thickness from 1 mm to 6 mm decreases the critical heat flux reached area by 23% at saturation liquid temperatures. Therefore, on the thicker spreader, more of the surface is utilized for nucleate boiling while localized hot regions that lead to surface dry-out are avoided. At a base temperature of 90 oC, the optimal thickness is found to be 4 mm, beyond which no significant improvement in heat removal can be obtained. Lower coolant temperatures can further increase the heat removal; it is reduced from an 18% improvement in the input power for the 1 mm case to only 3% in the 6 mm case for a coolant temperature drop of 24 oC. Therefore, a trade-off exists between the cost of maintaining the low liquid temperature and the increased heat removal capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Packaging
Journal of Electronic Packaging 工程技术-工程:电子与电气
CiteScore
4.90
自引率
6.20%
发文量
44
审稿时长
3 months
期刊介绍: The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems. Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.
期刊最新文献
Simultaneous Characterization of Both Ctes and Thermal Warpages of Flip-Chip Packages with a Cap Using Strain Gauges Research Status and Progress On Non-Destructive Testing Methods for Defect Inspection of Microelectronic Packaging Effects of Thermal-Moisture Coupled Field On Delamination Behavior of Electronic Packaging Heat Dissipation Design Based On Topology Optimization And Auxiliary Materials Optimal Design of Thermal Cycling Reliability For PBGA Assembly via FEM and Taguchi Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1