利用具有益生菌潜力的麦芽糖阴性葡萄酒酵母生产无酒精啤酒

IF 3.3 3区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Fermentation-Basel Pub Date : 2023-08-31 DOI:10.3390/fermentation9090805
Emre İlpars, Štěpánka Titlová, Katarína Hanzalíková, Ivana Křížová, Tomáš Brányik
{"title":"利用具有益生菌潜力的麦芽糖阴性葡萄酒酵母生产无酒精啤酒","authors":"Emre İlpars, Štěpánka Titlová, Katarína Hanzalíková, Ivana Křížová, Tomáš Brányik","doi":"10.3390/fermentation9090805","DOIUrl":null,"url":null,"abstract":"The ideal yeast for the production of alcohol-free beer does not form ethanol, produces a distinct and pleasant taste and has probiotic properties. This study characterized the potential of a wine yeast, Saccharomyces cerevisiae CCM 9181, to be an ideal alcohol free beer strain. It was found to be maltose-negative, and the ethanol content in fermented all-malt wort has never exceeded the legal limit of 0.5% v/v. Its specific growth rate (µ) was the highest at 25 °C (μ = 0.41 ± 0.01 h−1) and it was not affected by iso-α-bitter acids (15–50 IBU, international bitterness units). A response surface methodology was used to optimize the temperature and pitching rate affecting the formation of total higher alcohols and esters. A statistical analysis of the experimental data revealed that temperature affected esters most significantly, while both temperature and pitching rate had the most significant effects on higher alcohols. The sensory properties of beers were evaluated by trained panelists and they were described as malty, clove-like, having a very mild bitterness and a bouquet of white wine. The survival rate of S. cerevisiae CCM 9181 after simulated passage through the gastrointestinal tract was investigated as a first step to evaluate its probiotic properties. Our analyses show that Saccharomyces cerevisiae CCM9181 is a suitable candidate for the large-scale commercial production of alcohol-free beer and has probiotic potential that needs to be studied further.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":"8 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alcohol-Free Beer Produced Using Maltose-Negative Wine Yeast Saccharomyces cerevisiae with Probiotic Potential\",\"authors\":\"Emre İlpars, Štěpánka Titlová, Katarína Hanzalíková, Ivana Křížová, Tomáš Brányik\",\"doi\":\"10.3390/fermentation9090805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ideal yeast for the production of alcohol-free beer does not form ethanol, produces a distinct and pleasant taste and has probiotic properties. This study characterized the potential of a wine yeast, Saccharomyces cerevisiae CCM 9181, to be an ideal alcohol free beer strain. It was found to be maltose-negative, and the ethanol content in fermented all-malt wort has never exceeded the legal limit of 0.5% v/v. Its specific growth rate (µ) was the highest at 25 °C (μ = 0.41 ± 0.01 h−1) and it was not affected by iso-α-bitter acids (15–50 IBU, international bitterness units). A response surface methodology was used to optimize the temperature and pitching rate affecting the formation of total higher alcohols and esters. A statistical analysis of the experimental data revealed that temperature affected esters most significantly, while both temperature and pitching rate had the most significant effects on higher alcohols. The sensory properties of beers were evaluated by trained panelists and they were described as malty, clove-like, having a very mild bitterness and a bouquet of white wine. The survival rate of S. cerevisiae CCM 9181 after simulated passage through the gastrointestinal tract was investigated as a first step to evaluate its probiotic properties. Our analyses show that Saccharomyces cerevisiae CCM9181 is a suitable candidate for the large-scale commercial production of alcohol-free beer and has probiotic potential that needs to be studied further.\",\"PeriodicalId\":48535,\"journal\":{\"name\":\"Fermentation-Basel\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation9090805\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fermentation9090805","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生产无酒精啤酒的理想酵母不形成乙醇,产生独特宜人的味道,并具有益生菌特性。本研究表征了酿酒酵母CCM 9181作为一种理想的无酒精啤酒菌株的潜力。检测结果为麦芽糖阴性,全麦芽麦芽汁的乙醇含量从未超过0.5% v/v的法定限量。其比生长率(µ)在25°C时最高(μ = 0.41±0.01 h−1),不受iso-α-苦味酸(15-50 IBU,国际苦味单位)的影响。采用响应面法优化了温度和俯仰速率对总高级醇酯生成的影响。对实验数据的统计分析表明,温度对酯类的影响最为显著,而温度和俯仰速率对高级醇的影响最为显著。啤酒的感官特性是由训练有素的小组成员评估的,他们被描述为麦芽,丁香状,有非常轻微的苦味和白葡萄酒的气味。研究了酿酒酵母CCM 9181在模拟通过胃肠道后的存活率,作为评价其益生菌特性的第一步。我们的分析表明,酿酒酵母CCM9181是大规模商业生产无酒精啤酒的合适候选者,具有益生菌潜力,需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alcohol-Free Beer Produced Using Maltose-Negative Wine Yeast Saccharomyces cerevisiae with Probiotic Potential
The ideal yeast for the production of alcohol-free beer does not form ethanol, produces a distinct and pleasant taste and has probiotic properties. This study characterized the potential of a wine yeast, Saccharomyces cerevisiae CCM 9181, to be an ideal alcohol free beer strain. It was found to be maltose-negative, and the ethanol content in fermented all-malt wort has never exceeded the legal limit of 0.5% v/v. Its specific growth rate (µ) was the highest at 25 °C (μ = 0.41 ± 0.01 h−1) and it was not affected by iso-α-bitter acids (15–50 IBU, international bitterness units). A response surface methodology was used to optimize the temperature and pitching rate affecting the formation of total higher alcohols and esters. A statistical analysis of the experimental data revealed that temperature affected esters most significantly, while both temperature and pitching rate had the most significant effects on higher alcohols. The sensory properties of beers were evaluated by trained panelists and they were described as malty, clove-like, having a very mild bitterness and a bouquet of white wine. The survival rate of S. cerevisiae CCM 9181 after simulated passage through the gastrointestinal tract was investigated as a first step to evaluate its probiotic properties. Our analyses show that Saccharomyces cerevisiae CCM9181 is a suitable candidate for the large-scale commercial production of alcohol-free beer and has probiotic potential that needs to be studied further.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fermentation-Basel
Fermentation-Basel BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
3.80
自引率
18.90%
发文量
594
审稿时长
7 weeks
期刊最新文献
The Application of Corynebacterium glutamicum in l-Threonine Biosynthesis Volatile Fatty Acid Recovery from Arrested Anaerobic Digestion for the Production of Sustainable Aviation Fuel: A Review Impact of Thermo-Mechanical Pretreatment of Sargassum muticum on Anaerobic Co-Digestion with Wheat Straw Solid-State Fermentation as a Sustainable Tool for Extracting Phenolic Compounds from Cascalote Pods Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1