基于非平衡最优传输的长文档文本对齐与抽象摘要联合学习

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Natural Language Engineering Pub Date : 2023-05-15 DOI:10.1017/s1351324923000177
Xin Shen, Wai Lam, Shumin Ma, Huadong Wang
{"title":"基于非平衡最优传输的长文档文本对齐与抽象摘要联合学习","authors":"Xin Shen, Wai Lam, Shumin Ma, Huadong Wang","doi":"10.1017/s1351324923000177","DOIUrl":null,"url":null,"abstract":"\n Recently, neural abstractive text summarization (NATS) models based on sequence-to-sequence architecture have drawn a lot of attention. Real-world texts that need to be summarized range from short news with dozens of words to long reports with thousands of words. However, most existing NATS models are not good at summarizing long documents, due to the inherent limitations of their underlying neural architectures. In this paper, we focus on the task of long document summarization (LDS). Based on the inherent section structures of source documents, we divide an abstractive LDS problem into several smaller-sized problems. In this circumstance, how to provide a less-biased target summary as the supervision for each section is vital for the model’s performance. As a preliminary, we formally describe the section-to-summary-sentence (S2SS) alignment for LDS. Based on this, we propose a novel NATS framework for the LDS task. Our framework is built based on the theory of unbalanced optimal transport (UOT), and it is named as UOTSumm. It jointly learns three targets in a unified training objective, including the optimal S2SS alignment, a section-level NATS summarizer, and the number of aligned summary sentences for each section. In this way, UOTSumm directly learns the text alignment from summarization data, without resorting to any biased tool such as ROUGE. UOTSumm can be easily adapted to most existing NATS models. And we implement two versions of UOTSumm, with and without the pretrain-finetune technique. We evaluate UOTSumm on three publicly available LDS benchmarks: PubMed, arXiv, and GovReport. UOTSumm obviously outperforms its counterparts that use ROUGE for the text alignment. When combined with UOTSumm, the performance of two vanilla NATS models improves by a large margin. Besides, UOTSumm achieves better or comparable performance when compared with some recent strong baselines.","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint learning of text alignment and abstractive summarization for long documents via unbalanced optimal transport\",\"authors\":\"Xin Shen, Wai Lam, Shumin Ma, Huadong Wang\",\"doi\":\"10.1017/s1351324923000177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Recently, neural abstractive text summarization (NATS) models based on sequence-to-sequence architecture have drawn a lot of attention. Real-world texts that need to be summarized range from short news with dozens of words to long reports with thousands of words. However, most existing NATS models are not good at summarizing long documents, due to the inherent limitations of their underlying neural architectures. In this paper, we focus on the task of long document summarization (LDS). Based on the inherent section structures of source documents, we divide an abstractive LDS problem into several smaller-sized problems. In this circumstance, how to provide a less-biased target summary as the supervision for each section is vital for the model’s performance. As a preliminary, we formally describe the section-to-summary-sentence (S2SS) alignment for LDS. Based on this, we propose a novel NATS framework for the LDS task. Our framework is built based on the theory of unbalanced optimal transport (UOT), and it is named as UOTSumm. It jointly learns three targets in a unified training objective, including the optimal S2SS alignment, a section-level NATS summarizer, and the number of aligned summary sentences for each section. In this way, UOTSumm directly learns the text alignment from summarization data, without resorting to any biased tool such as ROUGE. UOTSumm can be easily adapted to most existing NATS models. And we implement two versions of UOTSumm, with and without the pretrain-finetune technique. We evaluate UOTSumm on three publicly available LDS benchmarks: PubMed, arXiv, and GovReport. UOTSumm obviously outperforms its counterparts that use ROUGE for the text alignment. When combined with UOTSumm, the performance of two vanilla NATS models improves by a large margin. Besides, UOTSumm achieves better or comparable performance when compared with some recent strong baselines.\",\"PeriodicalId\":49143,\"journal\":{\"name\":\"Natural Language Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1351324923000177\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1351324923000177","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于序列到序列结构的神经抽象文本摘要(NATS)模型引起了人们的广泛关注。需要总结的真实世界文本从几十字的短新闻到数千字的长报道。然而,由于其底层神经架构的固有局限性,大多数现有的NATS模型不善于总结长文档。在本文中,我们重点研究了长文档摘要(LDS)的任务。基于源文档固有的节结构,我们将抽象LDS问题划分为几个较小的问题。在这种情况下,如何提供一个偏差较小的目标摘要作为对每个部分的监督,对模型的性能至关重要。作为一个初步的,我们正式描述了LDS的部分到摘要句子(S2SS)的对齐。在此基础上,我们为LDS任务提出了一个新的NATS框架。我们的框架是基于不平衡最优运输理论建立的,它被命名为UOTSumm。它在一个统一的训练目标中联合学习三个目标,包括最佳S2SS对齐、节级NATS汇总器以及每个节的对齐汇总语句数量。通过这种方式,UOTSumm直接从摘要数据中学习文本对齐,而无需求助于任何有偏见的工具,如ROUGE。UOTSumm可以很容易地适应大多数现有的NATS模型。我们实现了两个版本的UOTSumm,有和没有预训练微调技术。我们根据三个公开的LDS基准评估UOTSumm:PubMed、arXiv和GovReport。UOTSumm明显优于使用ROUGE进行文本对齐的同行。当与UOTSumm相结合时,两个普通NATS模型的性能有了很大的提高。此外,与最近的一些强基线相比,UOTSumm实现了更好或可比的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint learning of text alignment and abstractive summarization for long documents via unbalanced optimal transport
Recently, neural abstractive text summarization (NATS) models based on sequence-to-sequence architecture have drawn a lot of attention. Real-world texts that need to be summarized range from short news with dozens of words to long reports with thousands of words. However, most existing NATS models are not good at summarizing long documents, due to the inherent limitations of their underlying neural architectures. In this paper, we focus on the task of long document summarization (LDS). Based on the inherent section structures of source documents, we divide an abstractive LDS problem into several smaller-sized problems. In this circumstance, how to provide a less-biased target summary as the supervision for each section is vital for the model’s performance. As a preliminary, we formally describe the section-to-summary-sentence (S2SS) alignment for LDS. Based on this, we propose a novel NATS framework for the LDS task. Our framework is built based on the theory of unbalanced optimal transport (UOT), and it is named as UOTSumm. It jointly learns three targets in a unified training objective, including the optimal S2SS alignment, a section-level NATS summarizer, and the number of aligned summary sentences for each section. In this way, UOTSumm directly learns the text alignment from summarization data, without resorting to any biased tool such as ROUGE. UOTSumm can be easily adapted to most existing NATS models. And we implement two versions of UOTSumm, with and without the pretrain-finetune technique. We evaluate UOTSumm on three publicly available LDS benchmarks: PubMed, arXiv, and GovReport. UOTSumm obviously outperforms its counterparts that use ROUGE for the text alignment. When combined with UOTSumm, the performance of two vanilla NATS models improves by a large margin. Besides, UOTSumm achieves better or comparable performance when compared with some recent strong baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Language Engineering
Natural Language Engineering COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
12.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Natural Language Engineering meets the needs of professionals and researchers working in all areas of computerised language processing, whether from the perspective of theoretical or descriptive linguistics, lexicology, computer science or engineering. Its aim is to bridge the gap between traditional computational linguistics research and the implementation of practical applications with potential real-world use. As well as publishing research articles on a broad range of topics - from text analysis, machine translation, information retrieval and speech analysis and generation to integrated systems and multi modal interfaces - it also publishes special issues on specific areas and technologies within these topics, an industry watch column and book reviews.
期刊最新文献
Start-up activity in the LLM ecosystem Anisotropic span embeddings and the negative impact of higher-order inference for coreference resolution: An empirical analysis Automated annotation of parallel bible corpora with cross-lingual semantic concordance How do control tokens affect natural language generation tasks like text simplification Emerging trends: When can users trust GPT, and when should they intervene?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1