Vinod Kurian Jacob;Jiyue Yang;Haoran He;Puneet Gupta;Kang L Wang;Sudhakar Pamarti
{"title":"使用压控MRAM和原位磁-数转换器的非易失性内存宏","authors":"Vinod Kurian Jacob;Jiyue Yang;Haoran He;Puneet Gupta;Kang L Wang;Sudhakar Pamarti","doi":"10.1109/JXCDC.2023.3258431","DOIUrl":null,"url":null,"abstract":"Compute-in-memory (CIM) accelerator has become a popular solution to achieve high energy efficiency for deep learning applications in edge devices. Recent works have demonstrated CIM macros using nonvolatile memories [spin transfer torque (STT)-MRAM and resistive random access memory (RRAM)] to take advantages of their nonvolatility and high density. However, effective computation dynamic range is far lower than their static random access memory (SRAM)-CIM counterparts due to low device ON/ OFF ratio. In this work, we combine a nonvolatile memory based on a voltage-controlled magnetic tunneling junction (VC-MTJ) device, called voltage-controlled MRAM or VC-MRAM, and accurate switched-capacitor-based CIM using a novel in situ magnetic-to-digital converter (MDC). The VC-MTJ device has demonstrated \n<inline-formula> <tex-math>$10\\times $ </tex-math></inline-formula>\n lower write energy and switching time compared to STT-MRAM device and has comparable density, read energy, and read latency. The in situ MDCs embedded inside each VC-MRAM row convert magnetically stored weight information to CMOS logic levels and enable switched-capacitor-based multiply–accumulate (MAC) operation with accuracy comparable to the state-of-the-art SRAM-CIM. This article describes the schematic and layout level design of a VC-MRAM CIM macro in 28 nm. This is the first nonvolatile CIM design to enable analog MAC computation with 256 parallel rows turned ON simultaneously without degradation in dynamic range (< 1 LSB). Detailed circuit simulations including experimentally validated VC-MTJ compact models show \n<inline-formula> <tex-math>$1.5\\times $ </tex-math></inline-formula>\n higher energy efficiency and \n<inline-formula> <tex-math>$2\\times $ </tex-math></inline-formula>\n higher density compared to the state-of-the-art SRAM-based CIM.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10075423.pdf","citationCount":"1","resultStr":"{\"title\":\"A Nonvolatile Compute-in-Memory Macro Using Voltage-Controlled MRAM and In Situ Magnetic-to-Digital Converter\",\"authors\":\"Vinod Kurian Jacob;Jiyue Yang;Haoran He;Puneet Gupta;Kang L Wang;Sudhakar Pamarti\",\"doi\":\"10.1109/JXCDC.2023.3258431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compute-in-memory (CIM) accelerator has become a popular solution to achieve high energy efficiency for deep learning applications in edge devices. Recent works have demonstrated CIM macros using nonvolatile memories [spin transfer torque (STT)-MRAM and resistive random access memory (RRAM)] to take advantages of their nonvolatility and high density. However, effective computation dynamic range is far lower than their static random access memory (SRAM)-CIM counterparts due to low device ON/ OFF ratio. In this work, we combine a nonvolatile memory based on a voltage-controlled magnetic tunneling junction (VC-MTJ) device, called voltage-controlled MRAM or VC-MRAM, and accurate switched-capacitor-based CIM using a novel in situ magnetic-to-digital converter (MDC). The VC-MTJ device has demonstrated \\n<inline-formula> <tex-math>$10\\\\times $ </tex-math></inline-formula>\\n lower write energy and switching time compared to STT-MRAM device and has comparable density, read energy, and read latency. The in situ MDCs embedded inside each VC-MRAM row convert magnetically stored weight information to CMOS logic levels and enable switched-capacitor-based multiply–accumulate (MAC) operation with accuracy comparable to the state-of-the-art SRAM-CIM. This article describes the schematic and layout level design of a VC-MRAM CIM macro in 28 nm. This is the first nonvolatile CIM design to enable analog MAC computation with 256 parallel rows turned ON simultaneously without degradation in dynamic range (< 1 LSB). Detailed circuit simulations including experimentally validated VC-MTJ compact models show \\n<inline-formula> <tex-math>$1.5\\\\times $ </tex-math></inline-formula>\\n higher energy efficiency and \\n<inline-formula> <tex-math>$2\\\\times $ </tex-math></inline-formula>\\n higher density compared to the state-of-the-art SRAM-based CIM.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6570653/10138050/10075423.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10075423/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10075423/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Nonvolatile Compute-in-Memory Macro Using Voltage-Controlled MRAM and In Situ Magnetic-to-Digital Converter
Compute-in-memory (CIM) accelerator has become a popular solution to achieve high energy efficiency for deep learning applications in edge devices. Recent works have demonstrated CIM macros using nonvolatile memories [spin transfer torque (STT)-MRAM and resistive random access memory (RRAM)] to take advantages of their nonvolatility and high density. However, effective computation dynamic range is far lower than their static random access memory (SRAM)-CIM counterparts due to low device ON/ OFF ratio. In this work, we combine a nonvolatile memory based on a voltage-controlled magnetic tunneling junction (VC-MTJ) device, called voltage-controlled MRAM or VC-MRAM, and accurate switched-capacitor-based CIM using a novel in situ magnetic-to-digital converter (MDC). The VC-MTJ device has demonstrated
$10\times $
lower write energy and switching time compared to STT-MRAM device and has comparable density, read energy, and read latency. The in situ MDCs embedded inside each VC-MRAM row convert magnetically stored weight information to CMOS logic levels and enable switched-capacitor-based multiply–accumulate (MAC) operation with accuracy comparable to the state-of-the-art SRAM-CIM. This article describes the schematic and layout level design of a VC-MRAM CIM macro in 28 nm. This is the first nonvolatile CIM design to enable analog MAC computation with 256 parallel rows turned ON simultaneously without degradation in dynamic range (< 1 LSB). Detailed circuit simulations including experimentally validated VC-MTJ compact models show
$1.5\times $
higher energy efficiency and
$2\times $
higher density compared to the state-of-the-art SRAM-based CIM.