{"title":"量子计算,对接,ADMET和分子动力学的酮型和非酮型d -葡聚糖抗细菌,黑白真菌和三阴性乳腺癌","authors":"","doi":"10.33263/briac134.374","DOIUrl":null,"url":null,"abstract":"D-glucofuranose has potent bioactivity against numerous diseases and pathogens, such as bacteria, fungi, viruses, and cancer. Normally, the ketal form of D-glucofuranose is converted into the non-ketal form by drug metabolism in the human body; as a result, both the ketal and non-ketal forms of D-glucofuranose are considered. To make a comparative biological activity study of ketal and non-ketal species of nine derivatives of D-glucofuranose, two bacteria, black fungus, white fungus, and triple-negative breast cancer, were selected. Firstly, the PASS prediction data from the online PASS tool indicated the probability of pathogenic efficacy through the Pa and Pi parameters. Secondly, the computational studies, such as molecular docking, molecular dynamic, ADMET, drug-likeness, pharmacokinetic, aquatic, and non-aquatic features, were calculated with three FDA-approved drugs, including azithromycin, nystatin, and cyclophosphamide. A comparative study of computational data has been performed where the ketal forms of D-glucofuranose derivatives were found highly biologically active with the satisfaction of the pharmacokinetic parameters, ADMET parameters, and Lipinski rule.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quantum Calculation, Docking, ADMET and Molecular Dynamics of Ketal and Non-ketal Forms of D-glucofuranose Against Bacteria, Black & White Fungus, and Triple-Negative Breast Cancer\",\"authors\":\"\",\"doi\":\"10.33263/briac134.374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"D-glucofuranose has potent bioactivity against numerous diseases and pathogens, such as bacteria, fungi, viruses, and cancer. Normally, the ketal form of D-glucofuranose is converted into the non-ketal form by drug metabolism in the human body; as a result, both the ketal and non-ketal forms of D-glucofuranose are considered. To make a comparative biological activity study of ketal and non-ketal species of nine derivatives of D-glucofuranose, two bacteria, black fungus, white fungus, and triple-negative breast cancer, were selected. Firstly, the PASS prediction data from the online PASS tool indicated the probability of pathogenic efficacy through the Pa and Pi parameters. Secondly, the computational studies, such as molecular docking, molecular dynamic, ADMET, drug-likeness, pharmacokinetic, aquatic, and non-aquatic features, were calculated with three FDA-approved drugs, including azithromycin, nystatin, and cyclophosphamide. A comparative study of computational data has been performed where the ketal forms of D-glucofuranose derivatives were found highly biologically active with the satisfaction of the pharmacokinetic parameters, ADMET parameters, and Lipinski rule.\",\"PeriodicalId\":9026,\"journal\":{\"name\":\"Biointerface Research in Applied Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerface Research in Applied Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/briac134.374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5
摘要
d -葡聚糖对许多疾病和病原体,如细菌、真菌、病毒和癌症具有强大的生物活性。正常情况下,d -葡聚糖在人体内通过药物代谢转化为非酮型;因此,考虑了d -葡萄糖葡萄糖的酮态和非酮态形式。以黑木耳、白木耳和三阴性乳腺癌两种细菌为研究对象,对九种d -葡聚糖衍生物的酮类和非酮类生物活性进行比较研究。首先,通过在线PASS工具的PASS预测数据,通过Pa和Pi参数表示致病功效的概率。其次,以阿奇霉素、制霉菌素、环磷酰胺3种fda批准的药物进行分子对接、分子动力学、ADMET、药物相似性、药代动力学、水生和非水生特征等计算研究。对计算数据进行了比较研究,发现d -葡聚糖衍生物的酮形具有高度的生物活性,符合药代动力学参数、ADMET参数和Lipinski规则。
Quantum Calculation, Docking, ADMET and Molecular Dynamics of Ketal and Non-ketal Forms of D-glucofuranose Against Bacteria, Black & White Fungus, and Triple-Negative Breast Cancer
D-glucofuranose has potent bioactivity against numerous diseases and pathogens, such as bacteria, fungi, viruses, and cancer. Normally, the ketal form of D-glucofuranose is converted into the non-ketal form by drug metabolism in the human body; as a result, both the ketal and non-ketal forms of D-glucofuranose are considered. To make a comparative biological activity study of ketal and non-ketal species of nine derivatives of D-glucofuranose, two bacteria, black fungus, white fungus, and triple-negative breast cancer, were selected. Firstly, the PASS prediction data from the online PASS tool indicated the probability of pathogenic efficacy through the Pa and Pi parameters. Secondly, the computational studies, such as molecular docking, molecular dynamic, ADMET, drug-likeness, pharmacokinetic, aquatic, and non-aquatic features, were calculated with three FDA-approved drugs, including azithromycin, nystatin, and cyclophosphamide. A comparative study of computational data has been performed where the ketal forms of D-glucofuranose derivatives were found highly biologically active with the satisfaction of the pharmacokinetic parameters, ADMET parameters, and Lipinski rule.
期刊介绍:
Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.