{"title":"高碳锰铁生产中岩石学参数对还原剂反应性的影响","authors":"S. Soqinase, J. Steenkamp, P. den Hoed, N. Wagner","doi":"10.17159/2411-9717/2321/2023","DOIUrl":null,"url":null,"abstract":"In pyrometallurgical processes, metal oxides are reduced from molten slag through carbothermic reduction. It is of interest to evaluate the reactivity of the carbonaceous materials towards substances such as slag. Characterization techniques such as coal petrography can provide insight into the influence of feed coal properties and how they potentially dictate reductant performance. This study aimed to compare the petrographically determined organic composition of coal to reductant reactivity. Two South African medium-rank C bituminous coals and one anthracite sample were investigated together with high-carbon ferromanganese industrial slag. The reductant reactivity tests were conducted at 1500°C in a muffle furnace to assess the potential of carbonaceous reductant in reacting with the main slag components. SEM-EDS was applied to understand the extent of MnO (and to a lesser extent, SiO2) reduction from the slag. Coal 2, consisting of a greater proportion of vitrinite (59.5 vol% on a mineral matter-free basis and 54.7 vol% including mineral matter) was the most reactive reductant. The anthracite sample, with the highest inert maceral proportions (71.8 vol% including mineral matter and 76.8 vol% on a mineral matter-free basis), was the least reactive reductant.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of petrographically determined parameters on reductant reactivity in the production of high-carbon ferromanganese\",\"authors\":\"S. Soqinase, J. Steenkamp, P. den Hoed, N. Wagner\",\"doi\":\"10.17159/2411-9717/2321/2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In pyrometallurgical processes, metal oxides are reduced from molten slag through carbothermic reduction. It is of interest to evaluate the reactivity of the carbonaceous materials towards substances such as slag. Characterization techniques such as coal petrography can provide insight into the influence of feed coal properties and how they potentially dictate reductant performance. This study aimed to compare the petrographically determined organic composition of coal to reductant reactivity. Two South African medium-rank C bituminous coals and one anthracite sample were investigated together with high-carbon ferromanganese industrial slag. The reductant reactivity tests were conducted at 1500°C in a muffle furnace to assess the potential of carbonaceous reductant in reacting with the main slag components. SEM-EDS was applied to understand the extent of MnO (and to a lesser extent, SiO2) reduction from the slag. Coal 2, consisting of a greater proportion of vitrinite (59.5 vol% on a mineral matter-free basis and 54.7 vol% including mineral matter) was the most reactive reductant. The anthracite sample, with the highest inert maceral proportions (71.8 vol% including mineral matter and 76.8 vol% on a mineral matter-free basis), was the least reactive reductant.\",\"PeriodicalId\":17492,\"journal\":{\"name\":\"Journal of The South African Institute of Mining and Metallurgy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The South African Institute of Mining and Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17159/2411-9717/2321/2023\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The South African Institute of Mining and Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17159/2411-9717/2321/2023","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
The effect of petrographically determined parameters on reductant reactivity in the production of high-carbon ferromanganese
In pyrometallurgical processes, metal oxides are reduced from molten slag through carbothermic reduction. It is of interest to evaluate the reactivity of the carbonaceous materials towards substances such as slag. Characterization techniques such as coal petrography can provide insight into the influence of feed coal properties and how they potentially dictate reductant performance. This study aimed to compare the petrographically determined organic composition of coal to reductant reactivity. Two South African medium-rank C bituminous coals and one anthracite sample were investigated together with high-carbon ferromanganese industrial slag. The reductant reactivity tests were conducted at 1500°C in a muffle furnace to assess the potential of carbonaceous reductant in reacting with the main slag components. SEM-EDS was applied to understand the extent of MnO (and to a lesser extent, SiO2) reduction from the slag. Coal 2, consisting of a greater proportion of vitrinite (59.5 vol% on a mineral matter-free basis and 54.7 vol% including mineral matter) was the most reactive reductant. The anthracite sample, with the highest inert maceral proportions (71.8 vol% including mineral matter and 76.8 vol% on a mineral matter-free basis), was the least reactive reductant.
期刊介绍:
The Journal serves as a medium for the publication of high quality scientific papers. This requires that the papers that are submitted for publication are properly and fairly refereed and edited. This process will maintain the high quality of the presentation of the paper and ensure that the technical content is in line with the accepted norms of scientific integrity.