政策调查与问卷数据的数据排除:异常反应与缺失

IF 3.4 Q1 EDUCATION & EDUCATIONAL RESEARCH Policy Insights from the Behavioral and Brain Sciences Pub Date : 2023-03-01 DOI:10.1177/23727322221144650
Maxwell R. Hong, Matthew F. Carter, Casey Kim, Ying Cheng
{"title":"政策调查与问卷数据的数据排除:异常反应与缺失","authors":"Maxwell R. Hong, Matthew F. Carter, Casey Kim, Ying Cheng","doi":"10.1177/23727322221144650","DOIUrl":null,"url":null,"abstract":"Data preprocessing is an integral step prior to analyzing data in psychological science, with implications for its potentially guiding policy. This article reports how psychological researchers address data preprocessing or quality concerns, with a focus on aberrant responses and missing data in self-report measures. 240 articles were sampled from four journals: Psychological Science, Journal of Personality and Social Psychology, Developmental Psychology, and Abnormal Psychology from 2012 to 2018. Nearly half of the studies did not report any missing data treatment (111/240; 46.25%), and if they did, the most common approach was listwise deletion (71/240; 29.6%). Studies that remove data due to missingness removed, on average, 12% of the sample. Likewise, most studies do not report any aberrant responses (194/240; 80%), but if they did, they classified 4% of the sample as suspect. Most studies are either not transparent enough about their data preprocessing steps or may be leveraging suboptimal procedures. Recommendations can improve transparency and data quality.","PeriodicalId":52185,"journal":{"name":"Policy Insights from the Behavioral and Brain Sciences","volume":"10 1","pages":"11 - 17"},"PeriodicalIF":3.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Exclusion in Policy Survey and Questionnaire Data: Aberrant Responses and Missingness\",\"authors\":\"Maxwell R. Hong, Matthew F. Carter, Casey Kim, Ying Cheng\",\"doi\":\"10.1177/23727322221144650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data preprocessing is an integral step prior to analyzing data in psychological science, with implications for its potentially guiding policy. This article reports how psychological researchers address data preprocessing or quality concerns, with a focus on aberrant responses and missing data in self-report measures. 240 articles were sampled from four journals: Psychological Science, Journal of Personality and Social Psychology, Developmental Psychology, and Abnormal Psychology from 2012 to 2018. Nearly half of the studies did not report any missing data treatment (111/240; 46.25%), and if they did, the most common approach was listwise deletion (71/240; 29.6%). Studies that remove data due to missingness removed, on average, 12% of the sample. Likewise, most studies do not report any aberrant responses (194/240; 80%), but if they did, they classified 4% of the sample as suspect. Most studies are either not transparent enough about their data preprocessing steps or may be leveraging suboptimal procedures. Recommendations can improve transparency and data quality.\",\"PeriodicalId\":52185,\"journal\":{\"name\":\"Policy Insights from the Behavioral and Brain Sciences\",\"volume\":\"10 1\",\"pages\":\"11 - 17\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Policy Insights from the Behavioral and Brain Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23727322221144650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Policy Insights from the Behavioral and Brain Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23727322221144650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

在心理科学中,数据预处理是分析数据之前不可或缺的一步,对其潜在的指导政策具有影响。本文报告了心理学研究者如何处理数据预处理或质量问题,重点关注自我报告测量中的异常反应和缺失数据。从2012年至2018年,从《心理科学》、《人格与社会心理学》、《发展心理学》和《变态心理学》四种期刊中抽取了240篇文章。近一半的研究没有报告任何缺失的数据处理(111/240;46.25%),如果有,最常见的方法是按列表删除(71/240;29.6%)。由于缺失而删除数据的研究平均删除了12%的样本。同样,大多数研究没有报告任何异常反应(1994 /240;80%),但如果他们这样做了,他们将4%的样本归类为可疑样本。大多数研究要么对其数据预处理步骤不够透明,要么可能利用了次优程序。建议可以提高透明度和数据质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Exclusion in Policy Survey and Questionnaire Data: Aberrant Responses and Missingness
Data preprocessing is an integral step prior to analyzing data in psychological science, with implications for its potentially guiding policy. This article reports how psychological researchers address data preprocessing or quality concerns, with a focus on aberrant responses and missing data in self-report measures. 240 articles were sampled from four journals: Psychological Science, Journal of Personality and Social Psychology, Developmental Psychology, and Abnormal Psychology from 2012 to 2018. Nearly half of the studies did not report any missing data treatment (111/240; 46.25%), and if they did, the most common approach was listwise deletion (71/240; 29.6%). Studies that remove data due to missingness removed, on average, 12% of the sample. Likewise, most studies do not report any aberrant responses (194/240; 80%), but if they did, they classified 4% of the sample as suspect. Most studies are either not transparent enough about their data preprocessing steps or may be leveraging suboptimal procedures. Recommendations can improve transparency and data quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Policy Insights from the Behavioral and Brain Sciences
Policy Insights from the Behavioral and Brain Sciences Social Sciences-Public Administration
CiteScore
5.30
自引率
0.00%
发文量
24
期刊最新文献
Catalyzing Equity in STEM Teams: Harnessing Generative AI for Inclusion and Diversity. How Decision Making Develops: Adolescents, Irrational Adults, and Should AI be Trusted With the Car Keys? Supporting Multilingualism in Immigrant Children: An Integrative Approach Designing for Sensory Adaptation: What You See Depends on What You’ve Been Looking at - Recommendations, Guidelines and Standards Should Reflect This ED-AI Lit: An Interdisciplinary Framework for AI Literacy in Education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1