异构显示集成系统的可制造性与机械可靠性研究

IF 4.2 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Advances in Manufacturing Pub Date : 2022-12-05 DOI:10.1007/s40436-022-00420-2
Hao-Hui Long, Hui-Cai Ma, Jia-Ying Gao, Li Zhang, De-Ming Zhang, Jian-Qiu Chen
{"title":"异构显示集成系统的可制造性与机械可靠性研究","authors":"Hao-Hui Long,&nbsp;Hui-Cai Ma,&nbsp;Jia-Ying Gao,&nbsp;Li Zhang,&nbsp;De-Ming Zhang,&nbsp;Jian-Qiu Chen","doi":"10.1007/s40436-022-00420-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the system on display panel (SoDP) architecture, the primary stage of heterogeneous integration system in display (HiSID), is introduced for the first time. In this architecture, the driving components of display, which are supposed to be on the display flexible print circuit (FPC) in traditional architecture, are innovatively integrated onto the backside of display panel. Through the SoDP architecture, the simulated impact strain in the panel fan-out region can decrease about 30% compared to the traditional architecture, and SoDP provides more the 10 mm extra space in the in-plane <i>Y</i>-direction for holding a larger battery. Also, the SoDP is compatible with the current organic laser emitted diode (OLED) and system in package (SiP) processes. Besides the primary stage, this paper also presents a comprehensive and extensive analysis on the challenges of the manufacturability for the advanced stage of HiSID from four key technologies perspectives: device miniaturization, massive manufacturing, driving technology, and advanced heterogeneous integration.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"11 2","pages":"191 - 202"},"PeriodicalIF":4.2000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Manufacturability and mechanical reliability study for heterogeneous integration system in display (HiSID)\",\"authors\":\"Hao-Hui Long,&nbsp;Hui-Cai Ma,&nbsp;Jia-Ying Gao,&nbsp;Li Zhang,&nbsp;De-Ming Zhang,&nbsp;Jian-Qiu Chen\",\"doi\":\"10.1007/s40436-022-00420-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the system on display panel (SoDP) architecture, the primary stage of heterogeneous integration system in display (HiSID), is introduced for the first time. In this architecture, the driving components of display, which are supposed to be on the display flexible print circuit (FPC) in traditional architecture, are innovatively integrated onto the backside of display panel. Through the SoDP architecture, the simulated impact strain in the panel fan-out region can decrease about 30% compared to the traditional architecture, and SoDP provides more the 10 mm extra space in the in-plane <i>Y</i>-direction for holding a larger battery. Also, the SoDP is compatible with the current organic laser emitted diode (OLED) and system in package (SiP) processes. Besides the primary stage, this paper also presents a comprehensive and extensive analysis on the challenges of the manufacturability for the advanced stage of HiSID from four key technologies perspectives: device miniaturization, massive manufacturing, driving technology, and advanced heterogeneous integration.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"11 2\",\"pages\":\"191 - 202\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-022-00420-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-022-00420-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2

摘要

本文首次介绍了异构显示集成系统(HiSID)的初级阶段——显示面板系统(SoDP)架构。在该架构中,将传统架构中应该在显示柔性印刷电路(FPC)上的显示驱动元件创新地集成到显示面板的背面。通过SoDP架构,与传统架构相比,面板扇形区域的模拟冲击应变降低了约30%,并且SoDP在平面y方向上提供了10 mm的额外空间,可以容纳更大的电池。此外,SoDP与当前的有机激光发射二极管(OLED)和系统级封装(SiP)工艺兼容。除了初级阶段,本文还从器件小型化、大规模制造、驱动技术和先进异构集成四个关键技术角度,全面、广泛地分析了HiSID高级阶段可制造性面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Manufacturability and mechanical reliability study for heterogeneous integration system in display (HiSID)

In this paper, the system on display panel (SoDP) architecture, the primary stage of heterogeneous integration system in display (HiSID), is introduced for the first time. In this architecture, the driving components of display, which are supposed to be on the display flexible print circuit (FPC) in traditional architecture, are innovatively integrated onto the backside of display panel. Through the SoDP architecture, the simulated impact strain in the panel fan-out region can decrease about 30% compared to the traditional architecture, and SoDP provides more the 10 mm extra space in the in-plane Y-direction for holding a larger battery. Also, the SoDP is compatible with the current organic laser emitted diode (OLED) and system in package (SiP) processes. Besides the primary stage, this paper also presents a comprehensive and extensive analysis on the challenges of the manufacturability for the advanced stage of HiSID from four key technologies perspectives: device miniaturization, massive manufacturing, driving technology, and advanced heterogeneous integration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Manufacturing
Advances in Manufacturing Materials Science-Polymers and Plastics
CiteScore
9.10
自引率
3.80%
发文量
274
期刊介绍: As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field. All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.
期刊最新文献
Grinding defect characteristics and removal mechanism of unidirectional Cf/SiC composites The effect of the slope angle and the magnetic field on the surface quality of nickel-based superalloys in blasting erosion arc machining Study on the mechanism of burr formation in ultrasonic vibration-assisted honing 9Cr18MoV valve sleeve Flexible modification and texture prediction and control method of internal gearing power honing tooth surface ·AI-enabled intelligent cockpit proactive affective interaction: middle-level feature fusion dual-branch deep learning network for driver emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1