{"title":"用于超快电子显微镜的光发射源和光束消光器","authors":"Lixin Zhang, J. Hoogenboom, B. Cook, P. Kruit","doi":"10.1063/1.5117058","DOIUrl":null,"url":null,"abstract":"Observing atomic motions as they occur is the dream goal of ultrafast electron microscopy (UEM). Great progress has been made so far thanks to the efforts of many scientists in developing the photoemission sources and beam blankers needed to create short pulses of electrons for the UEM experiments. While details on these setups have typically been reported, a systematic overview of methods used to obtain a pulsed beam and a comparison of relevant source parameters have not yet been conducted. In this report, we outline the basic requirements and parameters that are important for UEM. Different types of imaging modes in UEM are analyzed and summarized. After reviewing and analyzing the different kinds of photoemission sources and beam blankers that have been reported in the literature, we estimate the reduced brightness for all the photoemission sources reviewed and compare this to the brightness in the continuous and blanked beams. As for the problem of pulse broadening caused by the repulsive forces between electrons, four main methods available to mitigate the dispersion are summarized. We anticipate that the analysis and conclusions provided in this manuscript will be instructive for designing an UEM setup and could thus push the further development of UEM.","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5117058","citationCount":"25","resultStr":"{\"title\":\"Photoemission sources and beam blankers for ultrafast electron microscopy\",\"authors\":\"Lixin Zhang, J. Hoogenboom, B. Cook, P. Kruit\",\"doi\":\"10.1063/1.5117058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observing atomic motions as they occur is the dream goal of ultrafast electron microscopy (UEM). Great progress has been made so far thanks to the efforts of many scientists in developing the photoemission sources and beam blankers needed to create short pulses of electrons for the UEM experiments. While details on these setups have typically been reported, a systematic overview of methods used to obtain a pulsed beam and a comparison of relevant source parameters have not yet been conducted. In this report, we outline the basic requirements and parameters that are important for UEM. Different types of imaging modes in UEM are analyzed and summarized. After reviewing and analyzing the different kinds of photoemission sources and beam blankers that have been reported in the literature, we estimate the reduced brightness for all the photoemission sources reviewed and compare this to the brightness in the continuous and blanked beams. As for the problem of pulse broadening caused by the repulsive forces between electrons, four main methods available to mitigate the dispersion are summarized. We anticipate that the analysis and conclusions provided in this manuscript will be instructive for designing an UEM setup and could thus push the further development of UEM.\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1063/1.5117058\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5117058\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/1.5117058","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Photoemission sources and beam blankers for ultrafast electron microscopy
Observing atomic motions as they occur is the dream goal of ultrafast electron microscopy (UEM). Great progress has been made so far thanks to the efforts of many scientists in developing the photoemission sources and beam blankers needed to create short pulses of electrons for the UEM experiments. While details on these setups have typically been reported, a systematic overview of methods used to obtain a pulsed beam and a comparison of relevant source parameters have not yet been conducted. In this report, we outline the basic requirements and parameters that are important for UEM. Different types of imaging modes in UEM are analyzed and summarized. After reviewing and analyzing the different kinds of photoemission sources and beam blankers that have been reported in the literature, we estimate the reduced brightness for all the photoemission sources reviewed and compare this to the brightness in the continuous and blanked beams. As for the problem of pulse broadening caused by the repulsive forces between electrons, four main methods available to mitigate the dispersion are summarized. We anticipate that the analysis and conclusions provided in this manuscript will be instructive for designing an UEM setup and could thus push the further development of UEM.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.