{"title":"自养-混合养生物与鱼体内捕食结构相互作用的动力学","authors":"Ming Chen, Jimin Zhang, Satlykova Ejegul","doi":"10.1080/17513758.2022.2066729","DOIUrl":null,"url":null,"abstract":"A mathematical model with the intraguild predation structure is proposed to describe the interactions of autotrophs and mixotrophs containing light and nutrients in a well-mixed aquatic ecosystem. The dissipation, existence and stability of equilibria of the model are proved, and the ecological reproductive indexes for the extinction, survival and coexistence of autotrophs and mixotrophs are established. We also consider the influence of Holling type functional responses and abiotic factors on the coexistence and biomass of autotrophs and mixotrophs. It is shown that the intraguild predation structure is beneficial to phytoplankton biodiversity and provides an explanation for the phytoplankton paradox.","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"16 1","pages":"186 - 206"},"PeriodicalIF":1.8000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamics of autotroph–mixotroph interactions with the intraguild predation structure\",\"authors\":\"Ming Chen, Jimin Zhang, Satlykova Ejegul\",\"doi\":\"10.1080/17513758.2022.2066729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model with the intraguild predation structure is proposed to describe the interactions of autotrophs and mixotrophs containing light and nutrients in a well-mixed aquatic ecosystem. The dissipation, existence and stability of equilibria of the model are proved, and the ecological reproductive indexes for the extinction, survival and coexistence of autotrophs and mixotrophs are established. We also consider the influence of Holling type functional responses and abiotic factors on the coexistence and biomass of autotrophs and mixotrophs. It is shown that the intraguild predation structure is beneficial to phytoplankton biodiversity and provides an explanation for the phytoplankton paradox.\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"16 1\",\"pages\":\"186 - 206\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2022.2066729\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2022.2066729","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Dynamics of autotroph–mixotroph interactions with the intraguild predation structure
A mathematical model with the intraguild predation structure is proposed to describe the interactions of autotrophs and mixotrophs containing light and nutrients in a well-mixed aquatic ecosystem. The dissipation, existence and stability of equilibria of the model are proved, and the ecological reproductive indexes for the extinction, survival and coexistence of autotrophs and mixotrophs are established. We also consider the influence of Holling type functional responses and abiotic factors on the coexistence and biomass of autotrophs and mixotrophs. It is shown that the intraguild predation structure is beneficial to phytoplankton biodiversity and provides an explanation for the phytoplankton paradox.
期刊介绍:
Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.