紧身自行车衫虚拟样机的合身性和压力舒适性评价

IF 1.1 4区 工程技术 Q3 MATERIALS SCIENCE, TEXTILES Autex Research Journal Pub Date : 2022-01-21 DOI:10.2478/aut-2021-0057
Yetanawork Teyeme, B. Malengier, T. Tesfaye, S. Vasile, L. Van Langenhove
{"title":"紧身自行车衫虚拟样机的合身性和压力舒适性评价","authors":"Yetanawork Teyeme, B. Malengier, T. Tesfaye, S. Vasile, L. Van Langenhove","doi":"10.2478/aut-2021-0057","DOIUrl":null,"url":null,"abstract":"Abstract Graduated compression is widely used for medical application to prevent perioperative venous thromboembolism, but other applications such as sportswear can potentially also benefit from it. A tight-fit cycling shirt meant to ensure the correct position during cycling and prevent injuries was designed. The aim of this study was to improve garment pattern design from the aspect of clothing pressure for providing support and enhancing comfort to the user. This paper investigates the suitability of pressure maps from 3D fashion design software CLO 3D for design and in particular its capability to discriminate between various materials and cycling postures. Moreover, the impact of the mechanical properties of fabric was analyzed. In particular, virtual prototyping tool CLO 3D and pressure mapping were employed to achieve the required graduated compression while ensuring fit and comfort. Pattern adjustments were iteratively performed until stress, strain, and pressure maps showed adequate fit and pressure of the cycling garment on the virtual cyclist in static and dynamic cycling positions. The impact of fabric types on garment fit has been shown by generating the stress, strain, and pressure maps with a virtual simulation. It was found that the visualized pressure on the human body model shows distributions that are related to contact between body and garment, and large compression stresses occur in the lower parts of the two shirts. Evident garment deformation was shown at hip level, upper arm, lower front side seam, and front neck, which can reduce garment wear comfort and freedom of movement. The output was found to be sufficiently accurate to optimize the garments based on material and cycling posture.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fit and Pressure Comfort Evaluation on a Virtual Prototype of a Tight-Fit Cycling Shirt\",\"authors\":\"Yetanawork Teyeme, B. Malengier, T. Tesfaye, S. Vasile, L. Van Langenhove\",\"doi\":\"10.2478/aut-2021-0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Graduated compression is widely used for medical application to prevent perioperative venous thromboembolism, but other applications such as sportswear can potentially also benefit from it. A tight-fit cycling shirt meant to ensure the correct position during cycling and prevent injuries was designed. The aim of this study was to improve garment pattern design from the aspect of clothing pressure for providing support and enhancing comfort to the user. This paper investigates the suitability of pressure maps from 3D fashion design software CLO 3D for design and in particular its capability to discriminate between various materials and cycling postures. Moreover, the impact of the mechanical properties of fabric was analyzed. In particular, virtual prototyping tool CLO 3D and pressure mapping were employed to achieve the required graduated compression while ensuring fit and comfort. Pattern adjustments were iteratively performed until stress, strain, and pressure maps showed adequate fit and pressure of the cycling garment on the virtual cyclist in static and dynamic cycling positions. The impact of fabric types on garment fit has been shown by generating the stress, strain, and pressure maps with a virtual simulation. It was found that the visualized pressure on the human body model shows distributions that are related to contact between body and garment, and large compression stresses occur in the lower parts of the two shirts. Evident garment deformation was shown at hip level, upper arm, lower front side seam, and front neck, which can reduce garment wear comfort and freedom of movement. The output was found to be sufficiently accurate to optimize the garments based on material and cycling posture.\",\"PeriodicalId\":49104,\"journal\":{\"name\":\"Autex Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autex Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2478/aut-2021-0057\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autex Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/aut-2021-0057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 4

摘要

渐进式压缩在医学上广泛应用于预防围手术期静脉血栓栓塞,但其他应用如运动服也可能从中受益。为了保证骑行时的正确位置,防止受伤,设计了一件紧身的骑行服。本研究旨在从服装压力的角度改进服装图案设计,为使用者提供支撑,提高舒适度。本文调查了压力图从3D时装设计软件CLO 3D设计的适用性,特别是它的能力区分不同的材料和循环姿势。此外,还分析了对织物力学性能的影响。特别是,使用虚拟样机工具CLO 3D和压力映射来实现所需的分级压缩,同时确保贴合和舒适。反复进行模式调整,直到应力、应变和压力图显示虚拟骑车人在静态和动态骑车人位置上的骑行服有足够的适合度和压力。通过虚拟仿真生成应力、应变和压力图,展示了织物类型对服装合身度的影响。结果发现,人体模型上的可视化压力呈现出与人体与服装接触有关的分布,两件衬衫的下半部分出现较大的压缩应力。髋部、上臂、下前侧缝、前领等部位出现明显的服装变形,影响服装穿着的舒适性和活动的自由度。结果表明,该输出足够精确,可以根据材料和循环姿势对服装进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fit and Pressure Comfort Evaluation on a Virtual Prototype of a Tight-Fit Cycling Shirt
Abstract Graduated compression is widely used for medical application to prevent perioperative venous thromboembolism, but other applications such as sportswear can potentially also benefit from it. A tight-fit cycling shirt meant to ensure the correct position during cycling and prevent injuries was designed. The aim of this study was to improve garment pattern design from the aspect of clothing pressure for providing support and enhancing comfort to the user. This paper investigates the suitability of pressure maps from 3D fashion design software CLO 3D for design and in particular its capability to discriminate between various materials and cycling postures. Moreover, the impact of the mechanical properties of fabric was analyzed. In particular, virtual prototyping tool CLO 3D and pressure mapping were employed to achieve the required graduated compression while ensuring fit and comfort. Pattern adjustments were iteratively performed until stress, strain, and pressure maps showed adequate fit and pressure of the cycling garment on the virtual cyclist in static and dynamic cycling positions. The impact of fabric types on garment fit has been shown by generating the stress, strain, and pressure maps with a virtual simulation. It was found that the visualized pressure on the human body model shows distributions that are related to contact between body and garment, and large compression stresses occur in the lower parts of the two shirts. Evident garment deformation was shown at hip level, upper arm, lower front side seam, and front neck, which can reduce garment wear comfort and freedom of movement. The output was found to be sufficiently accurate to optimize the garments based on material and cycling posture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autex Research Journal
Autex Research Journal MATERIALS SCIENCE, TEXTILES-
CiteScore
2.80
自引率
9.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Only few journals deal with textile research at an international and global level complying with the highest standards. Autex Research Journal has the aim to play a leading role in distributing scientific and technological research results on textiles publishing original and innovative papers after peer reviewing, guaranteeing quality and excellence. Everybody dedicated to textiles and textile related materials is invited to submit papers and to contribute to a positive and appealing image of this Journal.
期刊最新文献
Development of an emotional response model for hospital gown design using structural equation modeling Preparation and properties of stainless steel filament/pure cotton woven fabric Network modeling of aesthetic effect for Chinese Yue Opera costume simulation images Study on the relationship between structure and moisturizing performance of seamless knitted fabrics of protein fibers for autumn and winter Antibacterial and yellowing performances of sports underwear fabric with polyamide/silver ion polyurethane filaments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1