{"title":"羟基磷灰石负载的金纳米颗粒催化硝基芳烃的高效还原和偶氮染料的降解","authors":"Keya Layek","doi":"10.1007/s10563-023-09401-2","DOIUrl":null,"url":null,"abstract":"<div><p>Gold nanoparticles supported on hydroxyapatite functions as a very efficient catalyst for the reduction of nitroarenes as well as for the degradation of azo dyes. The reaction takes place in aqueous medium at room temperature, using sodium borohydride as the source of hydrogen. The catalyst was prepared by a deposition–precipitation process using gold (III) chloride trihydrate solution containing hydroxyapatite as the support. The catalyst was thoroughly characterized by a pltehora of analytical techniques viz., TEM, HRTEM, FESEM, powder XRD, EDX and FTIR. The catalyst was then employed after optimization of reaction conditions. No additives or inert atmosphere was required and a very low loading of gold was sufficient enough to promote the reaction. Reaction kinetics studies were performed on the reduction of 4-nitrophenol to 4-aminophenol and a very high apparent rate constant of 1.63 × 10<sup>–2</sup> s<sup>−1</sup> was obtained. Reaction kinetics studies have also been demonstrated for the degradation of methyl orange and congo red dyes. Appreciable apparent rate constants namely 8.678 × 10<sup>−3</sup> and 3.464 × 10<sup>−3</sup> s<sup>−1</sup> were obtained for the degradation of methyl orange and congo red dyes respectively. The catalyst was recoverable by simple centrifugation and can be reused for at least five reaction cycles.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"27 4","pages":"349 - 362"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydroxyapatite Supported Gold Nanoparticles Catalyzed Efficient Reduction of Nitroarenes and Degradation of Azo Dyes\",\"authors\":\"Keya Layek\",\"doi\":\"10.1007/s10563-023-09401-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gold nanoparticles supported on hydroxyapatite functions as a very efficient catalyst for the reduction of nitroarenes as well as for the degradation of azo dyes. The reaction takes place in aqueous medium at room temperature, using sodium borohydride as the source of hydrogen. The catalyst was prepared by a deposition–precipitation process using gold (III) chloride trihydrate solution containing hydroxyapatite as the support. The catalyst was thoroughly characterized by a pltehora of analytical techniques viz., TEM, HRTEM, FESEM, powder XRD, EDX and FTIR. The catalyst was then employed after optimization of reaction conditions. No additives or inert atmosphere was required and a very low loading of gold was sufficient enough to promote the reaction. Reaction kinetics studies were performed on the reduction of 4-nitrophenol to 4-aminophenol and a very high apparent rate constant of 1.63 × 10<sup>–2</sup> s<sup>−1</sup> was obtained. Reaction kinetics studies have also been demonstrated for the degradation of methyl orange and congo red dyes. Appreciable apparent rate constants namely 8.678 × 10<sup>−3</sup> and 3.464 × 10<sup>−3</sup> s<sup>−1</sup> were obtained for the degradation of methyl orange and congo red dyes respectively. The catalyst was recoverable by simple centrifugation and can be reused for at least five reaction cycles.</p></div>\",\"PeriodicalId\":509,\"journal\":{\"name\":\"Catalysis Surveys from Asia\",\"volume\":\"27 4\",\"pages\":\"349 - 362\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Surveys from Asia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10563-023-09401-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-023-09401-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hydroxyapatite Supported Gold Nanoparticles Catalyzed Efficient Reduction of Nitroarenes and Degradation of Azo Dyes
Gold nanoparticles supported on hydroxyapatite functions as a very efficient catalyst for the reduction of nitroarenes as well as for the degradation of azo dyes. The reaction takes place in aqueous medium at room temperature, using sodium borohydride as the source of hydrogen. The catalyst was prepared by a deposition–precipitation process using gold (III) chloride trihydrate solution containing hydroxyapatite as the support. The catalyst was thoroughly characterized by a pltehora of analytical techniques viz., TEM, HRTEM, FESEM, powder XRD, EDX and FTIR. The catalyst was then employed after optimization of reaction conditions. No additives or inert atmosphere was required and a very low loading of gold was sufficient enough to promote the reaction. Reaction kinetics studies were performed on the reduction of 4-nitrophenol to 4-aminophenol and a very high apparent rate constant of 1.63 × 10–2 s−1 was obtained. Reaction kinetics studies have also been demonstrated for the degradation of methyl orange and congo red dyes. Appreciable apparent rate constants namely 8.678 × 10−3 and 3.464 × 10−3 s−1 were obtained for the degradation of methyl orange and congo red dyes respectively. The catalyst was recoverable by simple centrifugation and can be reused for at least five reaction cycles.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.