水面全附加水下航行器水动力阻力的数值验证

IF 0.7 4区 工程技术 Q4 ENGINEERING, MARINE International Journal of Maritime Engineering Pub Date : 2022-06-15 DOI:10.5750/ijme.v164i1.24
Mathieu Courdier, Z. Leong, J. Duffy, J. Binns, A. Conway
{"title":"水面全附加水下航行器水动力阻力的数值验证","authors":"Mathieu Courdier, Z. Leong, J. Duffy, J. Binns, A. Conway","doi":"10.5750/ijme.v164i1.24","DOIUrl":null,"url":null,"abstract":"Underwater Vehicles (UV) are required to travel on the surface for periods of time to complete mission requirements. However, knowledge on the drag of a surfaced UV is scarce in the public domain and the knowledge on the behaviour of surface craft is generally not applicable due to substantial differences in hull form. This paper presents a numerical study on the drag coefficient of a surfaced and fully appended BB2 UV in calm water. The results were firstly validated with the available experimental drag data for a range of speeds. Secondly, the free surface elevation along the length of the UV photographed during physical model scale experiments is compared to the free surface elevation predicted by CFD. This research has shown that a multiphase CFD model can accurately predict the drag due to the forward motion of a surfaced UV in calm water.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Validation of the Hydrodynamic Drag of a Surfaced and Fully Appended Underwater Vehicle\",\"authors\":\"Mathieu Courdier, Z. Leong, J. Duffy, J. Binns, A. Conway\",\"doi\":\"10.5750/ijme.v164i1.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater Vehicles (UV) are required to travel on the surface for periods of time to complete mission requirements. However, knowledge on the drag of a surfaced UV is scarce in the public domain and the knowledge on the behaviour of surface craft is generally not applicable due to substantial differences in hull form. This paper presents a numerical study on the drag coefficient of a surfaced and fully appended BB2 UV in calm water. The results were firstly validated with the available experimental drag data for a range of speeds. Secondly, the free surface elevation along the length of the UV photographed during physical model scale experiments is compared to the free surface elevation predicted by CFD. This research has shown that a multiphase CFD model can accurately predict the drag due to the forward motion of a surfaced UV in calm water.\",\"PeriodicalId\":50313,\"journal\":{\"name\":\"International Journal of Maritime Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Maritime Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5750/ijme.v164i1.24\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Maritime Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5750/ijme.v164i1.24","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

水下航行器(UV)需要在水面上航行一段时间以完成任务要求。然而,关于水面UV阻力的知识在公共领域是稀缺的,而且由于船体形式的实质性差异,关于水面船只行为的知识通常不适用。本文用数值方法研究了静水中浮面和全附加BB2 UV的阻力系数。首先用现有的实验阻力数据在一定速度范围内对结果进行了验证。其次,将物理模型尺度实验中拍摄的自由表面高程与CFD预测的自由表面高程进行了比较。研究表明,多相CFD模型可以准确地预测水面UV在平静水中向前运动所产生的阻力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Validation of the Hydrodynamic Drag of a Surfaced and Fully Appended Underwater Vehicle
Underwater Vehicles (UV) are required to travel on the surface for periods of time to complete mission requirements. However, knowledge on the drag of a surfaced UV is scarce in the public domain and the knowledge on the behaviour of surface craft is generally not applicable due to substantial differences in hull form. This paper presents a numerical study on the drag coefficient of a surfaced and fully appended BB2 UV in calm water. The results were firstly validated with the available experimental drag data for a range of speeds. Secondly, the free surface elevation along the length of the UV photographed during physical model scale experiments is compared to the free surface elevation predicted by CFD. This research has shown that a multiphase CFD model can accurately predict the drag due to the forward motion of a surfaced UV in calm water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: The International Journal of Maritime Engineering (IJME) provides a forum for the reporting and discussion on technical and scientific issues associated with the design and construction of commercial marine vessels . Contributions in the form of papers and notes, together with discussion on published papers are welcomed.
期刊最新文献
SEAFARER SELECTION FOR SUSTAINABLE SHIPPING: CASE STUDY FOR TURKEY VOYAGE SPEED OPTIMIZATION USING GENETIC ALGORITHM METHODOLOGY APPLIED TO STUDY WATER MIST AS AN INFRARED SIGNATURE SUPPRESSOR IN MARINE GAS TURBINES EXPERIMENTAL STUDY OF A VARIABLE BUOYANCY SYSTEM FOR LOW DEPTH OPERATION AN APPLICATION OF AGENT-BASED TRAFFIC FLOW MODEL FOR MARITIME SAFETY MANAGEMENT EVALUATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1