{"title":"基于DEA和electreiv方法的园艺作物多标准可持续性绩效评价","authors":"N. Banaeian, M. Zangeneh, P. Golińska-Dawson","doi":"10.1017/S1742170522000242","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a novel approach to multi-criteria sustainability performance assessment of horticultural crops. The crops are ranked by the decision-making method ELECTRE IV with environmental, energy and technological criteria. In total eight indicators are taken into consideration and calculated based on primary data collected from over 260 farms in northern Iran. Additionally, Data Envelopment Analysis is used to calculate the technical efficiency and potential for energy saving by different management of the production units. The novel contribution of this study is the comparison of several horticultural products (oranges, kiwis, persimmons and tangerines), when most of the previous studies have focused on one product. Moreover, novel calculations of the carbon footprint are presented for oranges, tangerines and persimmons. This paper also includes the first study on the environmental impact of persimmon fruit's production. The obtained results show that energy efficiency for orange, tangerine, kiwi and persimmon products: 1.1, 0.84, 0.53 and 1.22, respectively. In each hectare of kiwi orchards, the amount of CO2 emissions of 1219 kg and the ecological footprint of 3.21 hectares have been calculated, which is statistically significant compared to orange, tangerine and persimmon. The chemical and fuel inputs have the greatest potential for reducing energy consumption in the studied products. Results of ELECTRE IV showed that kiwi is the most sustainable selection for the studied region followed by orange, persimmon and tangerine, respectively. Kiwi has also relatively low technical efficiency. This means that this product has the greatest potential for a reduction of energy consumption, while maintaining the same amount of crop. It is recommended to include the development of kiwi orchards in the policies of Guilan, but with more careful management of the production inputs.","PeriodicalId":54495,"journal":{"name":"Renewable Agriculture and Food Systems","volume":"37 1","pages":"649 - 659"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-criteria sustainability performance assessment of horticultural crops using DEA and ELECTRE IV methods\",\"authors\":\"N. Banaeian, M. Zangeneh, P. Golińska-Dawson\",\"doi\":\"10.1017/S1742170522000242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a novel approach to multi-criteria sustainability performance assessment of horticultural crops. The crops are ranked by the decision-making method ELECTRE IV with environmental, energy and technological criteria. In total eight indicators are taken into consideration and calculated based on primary data collected from over 260 farms in northern Iran. Additionally, Data Envelopment Analysis is used to calculate the technical efficiency and potential for energy saving by different management of the production units. The novel contribution of this study is the comparison of several horticultural products (oranges, kiwis, persimmons and tangerines), when most of the previous studies have focused on one product. Moreover, novel calculations of the carbon footprint are presented for oranges, tangerines and persimmons. This paper also includes the first study on the environmental impact of persimmon fruit's production. The obtained results show that energy efficiency for orange, tangerine, kiwi and persimmon products: 1.1, 0.84, 0.53 and 1.22, respectively. In each hectare of kiwi orchards, the amount of CO2 emissions of 1219 kg and the ecological footprint of 3.21 hectares have been calculated, which is statistically significant compared to orange, tangerine and persimmon. The chemical and fuel inputs have the greatest potential for reducing energy consumption in the studied products. Results of ELECTRE IV showed that kiwi is the most sustainable selection for the studied region followed by orange, persimmon and tangerine, respectively. Kiwi has also relatively low technical efficiency. This means that this product has the greatest potential for a reduction of energy consumption, while maintaining the same amount of crop. It is recommended to include the development of kiwi orchards in the policies of Guilan, but with more careful management of the production inputs.\",\"PeriodicalId\":54495,\"journal\":{\"name\":\"Renewable Agriculture and Food Systems\",\"volume\":\"37 1\",\"pages\":\"649 - 659\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Agriculture and Food Systems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/S1742170522000242\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Agriculture and Food Systems","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S1742170522000242","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-criteria sustainability performance assessment of horticultural crops using DEA and ELECTRE IV methods
Abstract This paper presents a novel approach to multi-criteria sustainability performance assessment of horticultural crops. The crops are ranked by the decision-making method ELECTRE IV with environmental, energy and technological criteria. In total eight indicators are taken into consideration and calculated based on primary data collected from over 260 farms in northern Iran. Additionally, Data Envelopment Analysis is used to calculate the technical efficiency and potential for energy saving by different management of the production units. The novel contribution of this study is the comparison of several horticultural products (oranges, kiwis, persimmons and tangerines), when most of the previous studies have focused on one product. Moreover, novel calculations of the carbon footprint are presented for oranges, tangerines and persimmons. This paper also includes the first study on the environmental impact of persimmon fruit's production. The obtained results show that energy efficiency for orange, tangerine, kiwi and persimmon products: 1.1, 0.84, 0.53 and 1.22, respectively. In each hectare of kiwi orchards, the amount of CO2 emissions of 1219 kg and the ecological footprint of 3.21 hectares have been calculated, which is statistically significant compared to orange, tangerine and persimmon. The chemical and fuel inputs have the greatest potential for reducing energy consumption in the studied products. Results of ELECTRE IV showed that kiwi is the most sustainable selection for the studied region followed by orange, persimmon and tangerine, respectively. Kiwi has also relatively low technical efficiency. This means that this product has the greatest potential for a reduction of energy consumption, while maintaining the same amount of crop. It is recommended to include the development of kiwi orchards in the policies of Guilan, but with more careful management of the production inputs.
期刊介绍:
Renewable Agriculture and Food Systems (formerly American Journal of Alternative Agriculture) is a multi-disciplinary journal which focuses on the science that underpins economically, environmentally, and socially sustainable approaches to agriculture and food production. The journal publishes original research and review articles on the economic, ecological, and environmental impacts of agriculture; the effective use of renewable resources and biodiversity in agro-ecosystems; and the technological and sociological implications of sustainable food systems. It also contains a discussion forum, which presents lively discussions on new and provocative topics.