M. van der Meer, P. D. de Visser, E. Heuvelink, L. Marcelis
{"title":"行距对篱内番茄作物光吸收均匀性有影响,但对作物光合作用影响不大","authors":"M. van der Meer, P. D. de Visser, E. Heuvelink, L. Marcelis","doi":"10.1093/insilicoplants/diab025","DOIUrl":null,"url":null,"abstract":"\n Light distribution within canopies is important for plant growth. We aimed to quantify the influence of row orientation on inter- and within-row variation of light absorption and photosynthesis in a hedgerow crop. An experiment with two row orientations of a tomato crop was conducted which was then used to calibrate a functional–structural plant model (FSPM). The FSPM was used to analyse light absorption and photosynthesis for each of the row facing directions in the double-row trellis system (e.g. north- and south-facing rows for the east–west row orientation). The measured leaf area decreased by 18 % and specific leaf area by 10 %, while fruit dry weight increased by 7 % for south-facing compared to north-facing rows, but total plant dry weight did not significantly differ. Model simulations showed a 7 % higher light absorption for the south-facing rows than north-facing rows, while net photosynthesis was surprisingly −4 % lower, due to local light saturation. When in the model leaf area was kept equal between the rows, light absorption for the south-facing rows was 19 % and net photosynthesis 8 % higher than for north-facing rows. We conclude that although south-facing rows would be expected to have a higher photosynthesis than north-facing rows, plants can adapt their morphology such that differences in light absorption and photosynthesis between north- and south-facing rows are minimal. Rows oriented north–south were more uniform in light absorption and photosynthesis than east–west rows, but the overall crop light absorption and photosynthesis were minimally affected (both 3 % lower compared to east–west orientation).","PeriodicalId":36138,"journal":{"name":"in silico Plants","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Row orientation affects the uniformity of light absorption, but hardly affects crop photosynthesis in hedgerow tomato crops\",\"authors\":\"M. van der Meer, P. D. de Visser, E. Heuvelink, L. Marcelis\",\"doi\":\"10.1093/insilicoplants/diab025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Light distribution within canopies is important for plant growth. We aimed to quantify the influence of row orientation on inter- and within-row variation of light absorption and photosynthesis in a hedgerow crop. An experiment with two row orientations of a tomato crop was conducted which was then used to calibrate a functional–structural plant model (FSPM). The FSPM was used to analyse light absorption and photosynthesis for each of the row facing directions in the double-row trellis system (e.g. north- and south-facing rows for the east–west row orientation). The measured leaf area decreased by 18 % and specific leaf area by 10 %, while fruit dry weight increased by 7 % for south-facing compared to north-facing rows, but total plant dry weight did not significantly differ. Model simulations showed a 7 % higher light absorption for the south-facing rows than north-facing rows, while net photosynthesis was surprisingly −4 % lower, due to local light saturation. When in the model leaf area was kept equal between the rows, light absorption for the south-facing rows was 19 % and net photosynthesis 8 % higher than for north-facing rows. We conclude that although south-facing rows would be expected to have a higher photosynthesis than north-facing rows, plants can adapt their morphology such that differences in light absorption and photosynthesis between north- and south-facing rows are minimal. Rows oriented north–south were more uniform in light absorption and photosynthesis than east–west rows, but the overall crop light absorption and photosynthesis were minimally affected (both 3 % lower compared to east–west orientation).\",\"PeriodicalId\":36138,\"journal\":{\"name\":\"in silico Plants\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"in silico Plants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/insilicoplants/diab025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"in silico Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/insilicoplants/diab025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Row orientation affects the uniformity of light absorption, but hardly affects crop photosynthesis in hedgerow tomato crops
Light distribution within canopies is important for plant growth. We aimed to quantify the influence of row orientation on inter- and within-row variation of light absorption and photosynthesis in a hedgerow crop. An experiment with two row orientations of a tomato crop was conducted which was then used to calibrate a functional–structural plant model (FSPM). The FSPM was used to analyse light absorption and photosynthesis for each of the row facing directions in the double-row trellis system (e.g. north- and south-facing rows for the east–west row orientation). The measured leaf area decreased by 18 % and specific leaf area by 10 %, while fruit dry weight increased by 7 % for south-facing compared to north-facing rows, but total plant dry weight did not significantly differ. Model simulations showed a 7 % higher light absorption for the south-facing rows than north-facing rows, while net photosynthesis was surprisingly −4 % lower, due to local light saturation. When in the model leaf area was kept equal between the rows, light absorption for the south-facing rows was 19 % and net photosynthesis 8 % higher than for north-facing rows. We conclude that although south-facing rows would be expected to have a higher photosynthesis than north-facing rows, plants can adapt their morphology such that differences in light absorption and photosynthesis between north- and south-facing rows are minimal. Rows oriented north–south were more uniform in light absorption and photosynthesis than east–west rows, but the overall crop light absorption and photosynthesis were minimally affected (both 3 % lower compared to east–west orientation).