添加脂肪酸和热处理抗性淀粉的消化率与内部脂肪酸含量的关系

Q4 Engineering Japan Journal of Food Engineering Pub Date : 2018-09-15 DOI:10.11301/JSFE.18510
K. Nakashima, Shiori Oki, Rumiko Toyoshima, Sakiko Tozawa, M. Nakayama, K. Ishikawa, Han Zhang, J. Chen, Daiki Mori, Y. Akiyama
{"title":"添加脂肪酸和热处理抗性淀粉的消化率与内部脂肪酸含量的关系","authors":"K. Nakashima, Shiori Oki, Rumiko Toyoshima, Sakiko Tozawa, M. Nakayama, K. Ishikawa, Han Zhang, J. Chen, Daiki Mori, Y. Akiyama","doi":"10.11301/JSFE.18510","DOIUrl":null,"url":null,"abstract":"Potato starch was rendered digestion resistant by the addition of fatty acids (lauric, myristic, palmitic, stearic, oleic, or linoleic) and heat treatment. The effect of different fatty acids on starch digestibility was investigated, as well as the relationship between digestibility and the quantity of fatty acids able to form starch complexes. Although myristic acid reduced digestibility by the greatest degree in samples adjusted to 15% moisture content, no significant difference (p<0.05) among fatty acid types was observed in samples adjusted to 20% moisture content. Digestibility tended to decrease with increasing internal free fatty acid (IFFA) content up to 4 mg per 1 g of starch (dry basis) but did not change substantially for IFFA content greater than 4 mg. This result suggests that starch-fatty acid complex formation reaches saturation when IFFA content is approximately 4 mg and that further addition of fatty acid has no remarkable effect on digestibility.","PeriodicalId":39399,"journal":{"name":"Japan Journal of Food Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relationship Between the Digestion Rate and Internal Fatty Acid Content of Starch Rendered Resistant by Addition of Fatty Acids and Heat Treatment\",\"authors\":\"K. Nakashima, Shiori Oki, Rumiko Toyoshima, Sakiko Tozawa, M. Nakayama, K. Ishikawa, Han Zhang, J. Chen, Daiki Mori, Y. Akiyama\",\"doi\":\"10.11301/JSFE.18510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potato starch was rendered digestion resistant by the addition of fatty acids (lauric, myristic, palmitic, stearic, oleic, or linoleic) and heat treatment. The effect of different fatty acids on starch digestibility was investigated, as well as the relationship between digestibility and the quantity of fatty acids able to form starch complexes. Although myristic acid reduced digestibility by the greatest degree in samples adjusted to 15% moisture content, no significant difference (p<0.05) among fatty acid types was observed in samples adjusted to 20% moisture content. Digestibility tended to decrease with increasing internal free fatty acid (IFFA) content up to 4 mg per 1 g of starch (dry basis) but did not change substantially for IFFA content greater than 4 mg. This result suggests that starch-fatty acid complex formation reaches saturation when IFFA content is approximately 4 mg and that further addition of fatty acid has no remarkable effect on digestibility.\",\"PeriodicalId\":39399,\"journal\":{\"name\":\"Japan Journal of Food Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Journal of Food Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11301/JSFE.18510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Journal of Food Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11301/JSFE.18510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

通过添加脂肪酸(月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、油酸或亚油酸)和热处理,马铃薯淀粉具有抗消化性。研究了不同脂肪酸对淀粉消化率的影响,以及消化率与能够形成淀粉复合物的脂肪酸数量之间的关系。尽管肉豆蔻酸在调整至15%水分含量的样品中最大程度地降低了消化率,但在调整至20%水分含量的样本中,没有观察到脂肪酸类型之间的显著差异(p<0.05)。消化率倾向于随着内部游离脂肪酸(IFFA)含量的增加而降低,最高可达每1g淀粉4mg(干基),但IFFA含量大于4mg时没有显著变化。该结果表明,当IFFA含量约为4mg时,淀粉-脂肪酸复合物的形成达到饱和,并且进一步添加脂肪酸对消化率没有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relationship Between the Digestion Rate and Internal Fatty Acid Content of Starch Rendered Resistant by Addition of Fatty Acids and Heat Treatment
Potato starch was rendered digestion resistant by the addition of fatty acids (lauric, myristic, palmitic, stearic, oleic, or linoleic) and heat treatment. The effect of different fatty acids on starch digestibility was investigated, as well as the relationship between digestibility and the quantity of fatty acids able to form starch complexes. Although myristic acid reduced digestibility by the greatest degree in samples adjusted to 15% moisture content, no significant difference (p<0.05) among fatty acid types was observed in samples adjusted to 20% moisture content. Digestibility tended to decrease with increasing internal free fatty acid (IFFA) content up to 4 mg per 1 g of starch (dry basis) but did not change substantially for IFFA content greater than 4 mg. This result suggests that starch-fatty acid complex formation reaches saturation when IFFA content is approximately 4 mg and that further addition of fatty acid has no remarkable effect on digestibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Japan Journal of Food Engineering
Japan Journal of Food Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.50
自引率
0.00%
发文量
7
期刊介绍: The Japan Society for Food Engineering (the Society) publishes "Japan Journal of Food Engineering (the Journal)" to convey and disseminate information regarding food engineering and related areas to all members of the Society as an important part of its activities. The Journal is published with an aim of gaining wide recognition as a periodical pertaining to food engineering and related areas.
期刊最新文献
Comparison of Heat and High-Pressure Stress Response of Lactobacillus plantarum subsp. plantarum and Lactobacillus pentosus Cultivated in Soymilk and MRS Broth A Method for Determining the Optimum Temperature for a Polyphenol Separation Process by Reversed Phase Chromatography 食品加工における過熱水蒸気利用に関する研究 Implementation of Unfrozen Preservation Technology Using Some Natural Extracts with Supercooling-promoting Activity Continuous Monitoring of High Protein Concentrations by Optical Rotation—A Case Study for Continuous Monitoring of Monoclonal Antibody Concentrations During Ultrafiltration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1