{"title":"用酶水解间接控制纤维板和刨花板产生的木颗粒的蒸汽爆炸","authors":"A. Pažitný","doi":"10.2478/acs-2019-0026","DOIUrl":null,"url":null,"abstract":"Abstract Pretreatment of particles obtained from lignocellulosic materials by steam explosion with indirect control by enzymatic hydrolysis has been studied. The dendromass pretreatment model has been applied for recycled fibreboard and particle board based on softwood. Their structure and chemical composition partly predetermine these lignocellulosic materials consisting of a mixture of spruce and fir particles also for bioethanol production. Optimum steam explosion temperature of 205 °C was determined based on the concentration of total monosaccharides — glucose, xylose and arabinose, among all experimentally prepared hydrolysates. This corresponds to basic conditions for fine disintegration of biomass to lignocellulosic structure with good holocellulose accessibility. Particles obtained from fibreboard and particle board primarily consisting of softwood without steam explosion pretreatment provide relatively low cellulose accessibility for commercial enzymes activity while monosaccharides concentration is partly reduced because of torrefaction at high temperatures. The concentration of monosaccharides in hydrolysates was determined for original sample and each steam explosion temperature. Based on the steam explosion conditions, the effect of severity factors was investigated to find optimum pretreatment conditions to increase accessibility of softwood cellulose and hemicelluloses. The identified optimum severity factor RO = 4.09 matches the optimum steam explosion temperature of 205 °C and the residence time of 10 minutes.","PeriodicalId":7088,"journal":{"name":"Acta Chimica Slovaca","volume":"12 1","pages":"185 - 191"},"PeriodicalIF":0.9000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Steam explosion of wood particles from fibreboard and particle board with indirect control by enzymatic hydrolysis\",\"authors\":\"A. Pažitný\",\"doi\":\"10.2478/acs-2019-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Pretreatment of particles obtained from lignocellulosic materials by steam explosion with indirect control by enzymatic hydrolysis has been studied. The dendromass pretreatment model has been applied for recycled fibreboard and particle board based on softwood. Their structure and chemical composition partly predetermine these lignocellulosic materials consisting of a mixture of spruce and fir particles also for bioethanol production. Optimum steam explosion temperature of 205 °C was determined based on the concentration of total monosaccharides — glucose, xylose and arabinose, among all experimentally prepared hydrolysates. This corresponds to basic conditions for fine disintegration of biomass to lignocellulosic structure with good holocellulose accessibility. Particles obtained from fibreboard and particle board primarily consisting of softwood without steam explosion pretreatment provide relatively low cellulose accessibility for commercial enzymes activity while monosaccharides concentration is partly reduced because of torrefaction at high temperatures. The concentration of monosaccharides in hydrolysates was determined for original sample and each steam explosion temperature. Based on the steam explosion conditions, the effect of severity factors was investigated to find optimum pretreatment conditions to increase accessibility of softwood cellulose and hemicelluloses. The identified optimum severity factor RO = 4.09 matches the optimum steam explosion temperature of 205 °C and the residence time of 10 minutes.\",\"PeriodicalId\":7088,\"journal\":{\"name\":\"Acta Chimica Slovaca\",\"volume\":\"12 1\",\"pages\":\"185 - 191\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Chimica Slovaca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acs-2019-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chimica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acs-2019-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Steam explosion of wood particles from fibreboard and particle board with indirect control by enzymatic hydrolysis
Abstract Pretreatment of particles obtained from lignocellulosic materials by steam explosion with indirect control by enzymatic hydrolysis has been studied. The dendromass pretreatment model has been applied for recycled fibreboard and particle board based on softwood. Their structure and chemical composition partly predetermine these lignocellulosic materials consisting of a mixture of spruce and fir particles also for bioethanol production. Optimum steam explosion temperature of 205 °C was determined based on the concentration of total monosaccharides — glucose, xylose and arabinose, among all experimentally prepared hydrolysates. This corresponds to basic conditions for fine disintegration of biomass to lignocellulosic structure with good holocellulose accessibility. Particles obtained from fibreboard and particle board primarily consisting of softwood without steam explosion pretreatment provide relatively low cellulose accessibility for commercial enzymes activity while monosaccharides concentration is partly reduced because of torrefaction at high temperatures. The concentration of monosaccharides in hydrolysates was determined for original sample and each steam explosion temperature. Based on the steam explosion conditions, the effect of severity factors was investigated to find optimum pretreatment conditions to increase accessibility of softwood cellulose and hemicelluloses. The identified optimum severity factor RO = 4.09 matches the optimum steam explosion temperature of 205 °C and the residence time of 10 minutes.