F. Battistel, C. Chamberland, Kauser Johar, Ramon W. J. Overwater, F. Sebastiano, L. Skoric, Yosuke Ueno, M. Usman
{"title":"容错量子计算的实时解码:进展、挑战和展望","authors":"F. Battistel, C. Chamberland, Kauser Johar, Ramon W. J. Overwater, F. Sebastiano, L. Skoric, Yosuke Ueno, M. Usman","doi":"10.1088/2399-1984/aceba6","DOIUrl":null,"url":null,"abstract":"Quantum computing is poised to solve practically useful problems which are computationally intractable for classical supercomputers. However, the current generation of quantum computers are limited by errors that may only partially be mitigated by developing higher-quality qubits. Quantum error correction (QEC) will thus be necessary to ensure fault tolerance. QEC protects the logical information by cyclically measuring syndrome information about the errors. An essential part of QEC is the decoder, which uses the syndrome to compute the likely effect of the errors on the logical degrees of freedom and provide a tentative correction. The decoder must be accurate, fast enough to keep pace with the QEC cycle (e.g. on a microsecond timescale for superconducting qubits) and with hard real-time system integration to support logical operations. As such, real-time decoding is essential to realize fault-tolerant quantum computing and to achieve quantum advantage. In this work, we highlight some of the key challenges facing the implementation of real-time decoders while providing a succinct summary of the progress to-date. Furthermore, we lay out our perspective for the future development and provide a possible roadmap for the field of real-time decoding in the next few years. As the quantum hardware is anticipated to scale up, this perspective article will provide a guidance for researchers, focusing on the most pressing issues in real-time decoding and facilitating the development of solutions across quantum, nano and computer science.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":"7 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Real-time decoding for fault-tolerant quantum computing: progress, challenges and outlook\",\"authors\":\"F. Battistel, C. Chamberland, Kauser Johar, Ramon W. J. Overwater, F. Sebastiano, L. Skoric, Yosuke Ueno, M. Usman\",\"doi\":\"10.1088/2399-1984/aceba6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing is poised to solve practically useful problems which are computationally intractable for classical supercomputers. However, the current generation of quantum computers are limited by errors that may only partially be mitigated by developing higher-quality qubits. Quantum error correction (QEC) will thus be necessary to ensure fault tolerance. QEC protects the logical information by cyclically measuring syndrome information about the errors. An essential part of QEC is the decoder, which uses the syndrome to compute the likely effect of the errors on the logical degrees of freedom and provide a tentative correction. The decoder must be accurate, fast enough to keep pace with the QEC cycle (e.g. on a microsecond timescale for superconducting qubits) and with hard real-time system integration to support logical operations. As such, real-time decoding is essential to realize fault-tolerant quantum computing and to achieve quantum advantage. In this work, we highlight some of the key challenges facing the implementation of real-time decoders while providing a succinct summary of the progress to-date. Furthermore, we lay out our perspective for the future development and provide a possible roadmap for the field of real-time decoding in the next few years. As the quantum hardware is anticipated to scale up, this perspective article will provide a guidance for researchers, focusing on the most pressing issues in real-time decoding and facilitating the development of solutions across quantum, nano and computer science.\",\"PeriodicalId\":54222,\"journal\":{\"name\":\"Nano Futures\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Futures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-1984/aceba6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/aceba6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Real-time decoding for fault-tolerant quantum computing: progress, challenges and outlook
Quantum computing is poised to solve practically useful problems which are computationally intractable for classical supercomputers. However, the current generation of quantum computers are limited by errors that may only partially be mitigated by developing higher-quality qubits. Quantum error correction (QEC) will thus be necessary to ensure fault tolerance. QEC protects the logical information by cyclically measuring syndrome information about the errors. An essential part of QEC is the decoder, which uses the syndrome to compute the likely effect of the errors on the logical degrees of freedom and provide a tentative correction. The decoder must be accurate, fast enough to keep pace with the QEC cycle (e.g. on a microsecond timescale for superconducting qubits) and with hard real-time system integration to support logical operations. As such, real-time decoding is essential to realize fault-tolerant quantum computing and to achieve quantum advantage. In this work, we highlight some of the key challenges facing the implementation of real-time decoders while providing a succinct summary of the progress to-date. Furthermore, we lay out our perspective for the future development and provide a possible roadmap for the field of real-time decoding in the next few years. As the quantum hardware is anticipated to scale up, this perspective article will provide a guidance for researchers, focusing on the most pressing issues in real-time decoding and facilitating the development of solutions across quantum, nano and computer science.
期刊介绍:
Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.