{"title":"基于近红外LED的无创血糖测试用于检测糖尿病护理中的血糖水平","authors":"Siti Badriah, Yanyan Bahtiar, A. Andang","doi":"10.4028/p-vthp40","DOIUrl":null,"url":null,"abstract":"Diabetes Mellitus, with its rapid development and various complications that have caused it, has become one of the deadliest diseases in the world. Early detection efforts to raise blood sugar levels can help to avoid a variety of complications. Measuring devices are needed to find out blood sugar levels detect how much sugar is in the blood. The blood sugar measuring device is invasive by taking blood from capillaries tested both in the lab and using portable testing instruments. The use of this tool results in discomfort, pain, and trauma for the patient. The purpose of this study was to determine the degree of sensitivity of the NIR LED sensor on the thumb to the little finger to the reading of light reflections coming out of body tissues.. Currently, the index finger is often used as a medium to find out how much blood sugar is in non-invasive blood sugar measurements. The other four fingers' sensitivity is unknown at this time. Because the use of the index finger, which is located in the middle, can make activities difficult at times, information on the sensitivity level of the other fingers is required. This paper discusses the sensitivity of placing the NIR LED sensor on the five fingers to determine the most sensitive finger with the best response. Based on the testing results of 15 samples, Although the index finger receives the most significant stress, the correlation and linear regression tests show that the thumb has the closest relationship with the R2 = 0.6841. With this research, a test instrument with higher sensitivity for Diabetes can be developed by placing the sensor in a comfortable area. The implication is that the results of this study can be recommended to use the thumb as an alternative to the placement of the NIR LED sensor to measure blood sugar levels non-invasively in DM patients.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":"55 1","pages":"183 - 191"},"PeriodicalIF":0.5000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Near Infrared LEDs-Based Non-Invasive Blood Sugar Testing for Detecting Blood Sugar Levels on Diabetic Care\",\"authors\":\"Siti Badriah, Yanyan Bahtiar, A. Andang\",\"doi\":\"10.4028/p-vthp40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes Mellitus, with its rapid development and various complications that have caused it, has become one of the deadliest diseases in the world. Early detection efforts to raise blood sugar levels can help to avoid a variety of complications. Measuring devices are needed to find out blood sugar levels detect how much sugar is in the blood. The blood sugar measuring device is invasive by taking blood from capillaries tested both in the lab and using portable testing instruments. The use of this tool results in discomfort, pain, and trauma for the patient. The purpose of this study was to determine the degree of sensitivity of the NIR LED sensor on the thumb to the little finger to the reading of light reflections coming out of body tissues.. Currently, the index finger is often used as a medium to find out how much blood sugar is in non-invasive blood sugar measurements. The other four fingers' sensitivity is unknown at this time. Because the use of the index finger, which is located in the middle, can make activities difficult at times, information on the sensitivity level of the other fingers is required. This paper discusses the sensitivity of placing the NIR LED sensor on the five fingers to determine the most sensitive finger with the best response. Based on the testing results of 15 samples, Although the index finger receives the most significant stress, the correlation and linear regression tests show that the thumb has the closest relationship with the R2 = 0.6841. With this research, a test instrument with higher sensitivity for Diabetes can be developed by placing the sensor in a comfortable area. The implication is that the results of this study can be recommended to use the thumb as an alternative to the placement of the NIR LED sensor to measure blood sugar levels non-invasively in DM patients.\",\"PeriodicalId\":15161,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"volume\":\"55 1\",\"pages\":\"183 - 191\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-vthp40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-vthp40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Near Infrared LEDs-Based Non-Invasive Blood Sugar Testing for Detecting Blood Sugar Levels on Diabetic Care
Diabetes Mellitus, with its rapid development and various complications that have caused it, has become one of the deadliest diseases in the world. Early detection efforts to raise blood sugar levels can help to avoid a variety of complications. Measuring devices are needed to find out blood sugar levels detect how much sugar is in the blood. The blood sugar measuring device is invasive by taking blood from capillaries tested both in the lab and using portable testing instruments. The use of this tool results in discomfort, pain, and trauma for the patient. The purpose of this study was to determine the degree of sensitivity of the NIR LED sensor on the thumb to the little finger to the reading of light reflections coming out of body tissues.. Currently, the index finger is often used as a medium to find out how much blood sugar is in non-invasive blood sugar measurements. The other four fingers' sensitivity is unknown at this time. Because the use of the index finger, which is located in the middle, can make activities difficult at times, information on the sensitivity level of the other fingers is required. This paper discusses the sensitivity of placing the NIR LED sensor on the five fingers to determine the most sensitive finger with the best response. Based on the testing results of 15 samples, Although the index finger receives the most significant stress, the correlation and linear regression tests show that the thumb has the closest relationship with the R2 = 0.6841. With this research, a test instrument with higher sensitivity for Diabetes can be developed by placing the sensor in a comfortable area. The implication is that the results of this study can be recommended to use the thumb as an alternative to the placement of the NIR LED sensor to measure blood sugar levels non-invasively in DM patients.