{"title":"底部直立厚壁障和一对部分浸入式壁障的斜波衍射","authors":"Biman Sarkar, S. De","doi":"10.1115/1.4055912","DOIUrl":null,"url":null,"abstract":"\n On the basis of linearised theory of water waves, the present study has demonstrated a semi-analytical method to assess the hydrodynamic performance of a pair of partially immersed barriers just above a thick bottom-standing barrier. By means of eigenfunction expansion method, a system of first kind Fredholm-type integral equation involving horizontal component of velocity as unknown functions is developed for interaction of water waves with both types of barriers. The multi-term Galerkin approximation is adopted to determine these unknown functions having square root singularities at the submerged edge of the thin barriers and one-third singularities at the corners of the thick barrier. In order to overcome such types of singularities, Chebychev polynomials for half-singularities and ultra-spherical Gegenbauer polynomials for one-third singularities with suitable weight functions have been taken into consideration. The numerical examples of both reflection and transmission coefficients are presented to examine the hydrodynamic performance of breakwater. Some fascinating results like resonant frequencies are obtained for practical engineering. At the same time, reflection coefficients for the present breakwater agree reasonable for the limiting cases with previous available result.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Oblique wave diffraction by a bottom-standing thick barrier and a pair of partially immersed barriers\",\"authors\":\"Biman Sarkar, S. De\",\"doi\":\"10.1115/1.4055912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n On the basis of linearised theory of water waves, the present study has demonstrated a semi-analytical method to assess the hydrodynamic performance of a pair of partially immersed barriers just above a thick bottom-standing barrier. By means of eigenfunction expansion method, a system of first kind Fredholm-type integral equation involving horizontal component of velocity as unknown functions is developed for interaction of water waves with both types of barriers. The multi-term Galerkin approximation is adopted to determine these unknown functions having square root singularities at the submerged edge of the thin barriers and one-third singularities at the corners of the thick barrier. In order to overcome such types of singularities, Chebychev polynomials for half-singularities and ultra-spherical Gegenbauer polynomials for one-third singularities with suitable weight functions have been taken into consideration. The numerical examples of both reflection and transmission coefficients are presented to examine the hydrodynamic performance of breakwater. Some fascinating results like resonant frequencies are obtained for practical engineering. At the same time, reflection coefficients for the present breakwater agree reasonable for the limiting cases with previous available result.\",\"PeriodicalId\":50106,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055912\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055912","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Oblique wave diffraction by a bottom-standing thick barrier and a pair of partially immersed barriers
On the basis of linearised theory of water waves, the present study has demonstrated a semi-analytical method to assess the hydrodynamic performance of a pair of partially immersed barriers just above a thick bottom-standing barrier. By means of eigenfunction expansion method, a system of first kind Fredholm-type integral equation involving horizontal component of velocity as unknown functions is developed for interaction of water waves with both types of barriers. The multi-term Galerkin approximation is adopted to determine these unknown functions having square root singularities at the submerged edge of the thin barriers and one-third singularities at the corners of the thick barrier. In order to overcome such types of singularities, Chebychev polynomials for half-singularities and ultra-spherical Gegenbauer polynomials for one-third singularities with suitable weight functions have been taken into consideration. The numerical examples of both reflection and transmission coefficients are presented to examine the hydrodynamic performance of breakwater. Some fascinating results like resonant frequencies are obtained for practical engineering. At the same time, reflection coefficients for the present breakwater agree reasonable for the limiting cases with previous available result.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.