{"title":"基于MDA-ANFIS混合方法的九级逆变器风能转换并网太阳能系统控制","authors":"A. Apparao, G. Chandra Sekhar","doi":"10.1556/1848.2022.00474","DOIUrl":null,"url":null,"abstract":"A hybrid approach is proposed in this paper to achieve the load power requirement for grid connected hybrid photovoltaic wind system. The proposed approach is the combined execution of both the Modified Dragonfly Algorithm (MDA) and Adaptive Neuro-Fuzzy Interference System (ANFIS), hence it is called MDA-ANFIS. ANFIS approach is improved by the MDA approach to minimize the error functions. The main aim of the proposed approach is satisfying the load power requirement and obtains the maximum energy from the hybrid wind solar system. Through the modelling of operating modes of generation units, the proposed approach determines the switching states of the inverter. The MDA approach is utilized to generate the dataset and the data set is processed by ANFIS, which creates the control signal. By using the proposed approach, it was possible to minimize the system parameter radiation, external disturbances as well as optimally fulfill the load demand. The proposed method is activated in MATLAB/Simulink platform, and its performance is compared with existing methods.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid MDA-ANFIS approach based control of grid connected solar system with nine level inverter wind energy conversion\",\"authors\":\"A. Apparao, G. Chandra Sekhar\",\"doi\":\"10.1556/1848.2022.00474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid approach is proposed in this paper to achieve the load power requirement for grid connected hybrid photovoltaic wind system. The proposed approach is the combined execution of both the Modified Dragonfly Algorithm (MDA) and Adaptive Neuro-Fuzzy Interference System (ANFIS), hence it is called MDA-ANFIS. ANFIS approach is improved by the MDA approach to minimize the error functions. The main aim of the proposed approach is satisfying the load power requirement and obtains the maximum energy from the hybrid wind solar system. Through the modelling of operating modes of generation units, the proposed approach determines the switching states of the inverter. The MDA approach is utilized to generate the dataset and the data set is processed by ANFIS, which creates the control signal. By using the proposed approach, it was possible to minimize the system parameter radiation, external disturbances as well as optimally fulfill the load demand. The proposed method is activated in MATLAB/Simulink platform, and its performance is compared with existing methods.\",\"PeriodicalId\":37508,\"journal\":{\"name\":\"International Review of Applied Sciences and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/1848.2022.00474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2022.00474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Hybrid MDA-ANFIS approach based control of grid connected solar system with nine level inverter wind energy conversion
A hybrid approach is proposed in this paper to achieve the load power requirement for grid connected hybrid photovoltaic wind system. The proposed approach is the combined execution of both the Modified Dragonfly Algorithm (MDA) and Adaptive Neuro-Fuzzy Interference System (ANFIS), hence it is called MDA-ANFIS. ANFIS approach is improved by the MDA approach to minimize the error functions. The main aim of the proposed approach is satisfying the load power requirement and obtains the maximum energy from the hybrid wind solar system. Through the modelling of operating modes of generation units, the proposed approach determines the switching states of the inverter. The MDA approach is utilized to generate the dataset and the data set is processed by ANFIS, which creates the control signal. By using the proposed approach, it was possible to minimize the system parameter radiation, external disturbances as well as optimally fulfill the load demand. The proposed method is activated in MATLAB/Simulink platform, and its performance is compared with existing methods.
期刊介绍:
International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.