基于图形神经网络的可拉伸阵列肌电传感器用于静态和动态手势识别系统

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC npj Flexible Electronics Pub Date : 2023-04-12 DOI:10.1038/s41528-023-00246-3
Hyeyun Lee, Soyoung Lee, Jaeseong Kim, Heesoo Jung, Kyung Jae Yoon, Srinivas Gandla, Hogun Park, Sunkook Kim
{"title":"基于图形神经网络的可拉伸阵列肌电传感器用于静态和动态手势识别系统","authors":"Hyeyun Lee, Soyoung Lee, Jaeseong Kim, Heesoo Jung, Kyung Jae Yoon, Srinivas Gandla, Hogun Park, Sunkook Kim","doi":"10.1038/s41528-023-00246-3","DOIUrl":null,"url":null,"abstract":"With advances in artificial intelligence (AI)-based algorithms, gesture recognition accuracy from sEMG signals has continued to increase. Spatiotemporal multichannel-sEMG signals substantially increase the quantity and reliability of the data for any type of study. Here, we report an array of bipolar stretchable sEMG electrodes with a self-attention-based graph neural network to recognize gestures with high accuracy. The array is designed to spatially cover the skeletal muscles to acquire the regional sampling data of EMG activity from 18 different gestures. The system can differentiate individual static and dynamic gestures with ~97% accuracy when training a single trial per gesture. Moreover, a sticky patchwork of holes adhered to an array sensor enables skin-like attributes such as stretchability and water vapor permeability and aids in delivering stable EMG signals. In addition, the recognition accuracy (~95%) remained unchanged even after long-term testing for over 72 h and being reused more than 10 times.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00246-3.pdf","citationCount":"7","resultStr":"{\"title\":\"Stretchable array electromyography sensor with graph neural network for static and dynamic gestures recognition system\",\"authors\":\"Hyeyun Lee, Soyoung Lee, Jaeseong Kim, Heesoo Jung, Kyung Jae Yoon, Srinivas Gandla, Hogun Park, Sunkook Kim\",\"doi\":\"10.1038/s41528-023-00246-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With advances in artificial intelligence (AI)-based algorithms, gesture recognition accuracy from sEMG signals has continued to increase. Spatiotemporal multichannel-sEMG signals substantially increase the quantity and reliability of the data for any type of study. Here, we report an array of bipolar stretchable sEMG electrodes with a self-attention-based graph neural network to recognize gestures with high accuracy. The array is designed to spatially cover the skeletal muscles to acquire the regional sampling data of EMG activity from 18 different gestures. The system can differentiate individual static and dynamic gestures with ~97% accuracy when training a single trial per gesture. Moreover, a sticky patchwork of holes adhered to an array sensor enables skin-like attributes such as stretchability and water vapor permeability and aids in delivering stable EMG signals. In addition, the recognition accuracy (~95%) remained unchanged even after long-term testing for over 72 h and being reused more than 10 times.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-023-00246-3.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-023-00246-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-023-00246-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 7

摘要

随着基于人工智能(AI)算法的进步,sEMG 信号的手势识别准确率不断提高。时空多通道 sEMG 信号大大提高了任何类型研究的数据量和可靠性。在此,我们报告了一种双极可拉伸 sEMG 电极阵列,该阵列具有基于自我注意的图神经网络,可高精度识别手势。该阵列设计用于在空间上覆盖骨骼肌,以获取 18 种不同手势的 EMG 活动区域采样数据。在对每个手势进行单次试验训练时,系统能以约 97% 的准确率区分单个静态和动态手势。此外,粘贴在阵列传感器上的粘性补孔具有类似皮肤的特性,如伸展性和水蒸气渗透性,有助于提供稳定的肌电信号。此外,即使经过 72 小时以上的长期测试和 10 次以上的重复使用,识别准确率(约 95%)仍保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stretchable array electromyography sensor with graph neural network for static and dynamic gestures recognition system
With advances in artificial intelligence (AI)-based algorithms, gesture recognition accuracy from sEMG signals has continued to increase. Spatiotemporal multichannel-sEMG signals substantially increase the quantity and reliability of the data for any type of study. Here, we report an array of bipolar stretchable sEMG electrodes with a self-attention-based graph neural network to recognize gestures with high accuracy. The array is designed to spatially cover the skeletal muscles to acquire the regional sampling data of EMG activity from 18 different gestures. The system can differentiate individual static and dynamic gestures with ~97% accuracy when training a single trial per gesture. Moreover, a sticky patchwork of holes adhered to an array sensor enables skin-like attributes such as stretchability and water vapor permeability and aids in delivering stable EMG signals. In addition, the recognition accuracy (~95%) remained unchanged even after long-term testing for over 72 h and being reused more than 10 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
期刊最新文献
Combustion-assisted low-temperature ZrO2/SnO2 films for high-performance flexible thin film transistors Analytic modeling and validation of strain in textile-based OLEDs for advanced textile display technologies Fully biodegradable electrochromic display for disposable patch Strain-dependent charge trapping and its impact on the operational stability of polymer field-effect transistors Flexible TiO2-WO3−x hybrid memristor with enhanced linearity and synaptic plasticity for precise weight tuning in neuromorphic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1