用傅立叶变换红外技术表征苯甲酸类液晶的太赫兹光谱

IF 1.1 4区 化学 Q3 SPECTROSCOPY Spectroscopy Letters Pub Date : 2023-04-08 DOI:10.1080/00387010.2023.2197992
L. Lepodise, Tshepo Pheko-Ofitlhile
{"title":"用傅立叶变换红外技术表征苯甲酸类液晶的太赫兹光谱","authors":"L. Lepodise, Tshepo Pheko-Ofitlhile","doi":"10.1080/00387010.2023.2197992","DOIUrl":null,"url":null,"abstract":"Abstract Terahertz spectroscopic studies of 4-octyloxybenzoic acid, 4-decyloxybenzoic acid and 4-hexylbenzoic acid liquid crystals were performed using the Fourier Transform Infrared method. The materials are characterized by distinct absorption bands in the 6–18 terahertz frequency range. A good correspondence was observed between the experimental frequencies and theoretical frequencies of the single molecule obtained by Density Functional Theory calculations for all the three compounds. The spectra of the studied compounds had three bands, which appeared at similar frequencies and with the same vibration modes. 4-Octyloxybenzoic acid, 4-decyloxybenzoic acid and 4-hexylbenzoic acid had two absorption bands that appeared at similar frequencies and exhibited different vibration modes. This study interestingly demonstrates that even though compounds of an almost similar molecular structure might output bands at the same frequencies, the correspondence might not be apparent. The single molecule model frequencies and experimental frequencies for 4-decyloxybenzoic acid and 4-octyloxybenzoic acid further revealed that all the observed bands are due to intramolecular interaction. However, the 4-hexylbenzoic acid spectrum has one apparently intermolecular band. This work addresses the limitation in the intermediate terahertz spectroscopic studies of liquid crystals and furthermore emphasizes the robustness of Fourier Transform Infrared technique in identifying materials with similar attributes.","PeriodicalId":21953,"journal":{"name":"Spectroscopy Letters","volume":"56 1","pages":"211 - 217"},"PeriodicalIF":1.1000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terahertz (6-18 THz) spectroscopic characterization of benzoic acid class liquid crystals using Fourier Transform Infrared technique\",\"authors\":\"L. Lepodise, Tshepo Pheko-Ofitlhile\",\"doi\":\"10.1080/00387010.2023.2197992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Terahertz spectroscopic studies of 4-octyloxybenzoic acid, 4-decyloxybenzoic acid and 4-hexylbenzoic acid liquid crystals were performed using the Fourier Transform Infrared method. The materials are characterized by distinct absorption bands in the 6–18 terahertz frequency range. A good correspondence was observed between the experimental frequencies and theoretical frequencies of the single molecule obtained by Density Functional Theory calculations for all the three compounds. The spectra of the studied compounds had three bands, which appeared at similar frequencies and with the same vibration modes. 4-Octyloxybenzoic acid, 4-decyloxybenzoic acid and 4-hexylbenzoic acid had two absorption bands that appeared at similar frequencies and exhibited different vibration modes. This study interestingly demonstrates that even though compounds of an almost similar molecular structure might output bands at the same frequencies, the correspondence might not be apparent. The single molecule model frequencies and experimental frequencies for 4-decyloxybenzoic acid and 4-octyloxybenzoic acid further revealed that all the observed bands are due to intramolecular interaction. However, the 4-hexylbenzoic acid spectrum has one apparently intermolecular band. This work addresses the limitation in the intermediate terahertz spectroscopic studies of liquid crystals and furthermore emphasizes the robustness of Fourier Transform Infrared technique in identifying materials with similar attributes.\",\"PeriodicalId\":21953,\"journal\":{\"name\":\"Spectroscopy Letters\",\"volume\":\"56 1\",\"pages\":\"211 - 217\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectroscopy Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/00387010.2023.2197992\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/00387010.2023.2197992","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

摘要采用傅里叶变换红外方法对4-辛氧基苯甲酸、4-癸氧基苯甲酸和4-己基苯甲酸液晶进行了太赫兹光谱研究。该材料在6-18太赫兹频率范围内具有明显的吸收带。用密度泛函理论计算得到的三种化合物的实验频率与理论频率之间有很好的对应关系。所研究的化合物的光谱有三个波段,它们出现在相似的频率和相同的振动模式。4-辛氧基苯甲酸、4-癸氧基苯甲酸和4-己基苯甲酸有两个频率相似、振动模式不同的吸收带。有趣的是,这项研究表明,即使几乎相似的分子结构的化合物可能在相同的频率上输出波段,这种对应关系可能并不明显。4-烷基氧基苯甲酸和4-辛基氧基苯甲酸的单分子模型频率和实验频率进一步揭示了所有观察到的波段都是由于分子内相互作用引起的。然而,4-己基苯甲酸光谱有一条明显的分子间带。这项工作解决了液晶中间太赫兹光谱研究的局限性,并进一步强调了傅里叶变换红外技术在识别具有相似属性的材料方面的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Terahertz (6-18 THz) spectroscopic characterization of benzoic acid class liquid crystals using Fourier Transform Infrared technique
Abstract Terahertz spectroscopic studies of 4-octyloxybenzoic acid, 4-decyloxybenzoic acid and 4-hexylbenzoic acid liquid crystals were performed using the Fourier Transform Infrared method. The materials are characterized by distinct absorption bands in the 6–18 terahertz frequency range. A good correspondence was observed between the experimental frequencies and theoretical frequencies of the single molecule obtained by Density Functional Theory calculations for all the three compounds. The spectra of the studied compounds had three bands, which appeared at similar frequencies and with the same vibration modes. 4-Octyloxybenzoic acid, 4-decyloxybenzoic acid and 4-hexylbenzoic acid had two absorption bands that appeared at similar frequencies and exhibited different vibration modes. This study interestingly demonstrates that even though compounds of an almost similar molecular structure might output bands at the same frequencies, the correspondence might not be apparent. The single molecule model frequencies and experimental frequencies for 4-decyloxybenzoic acid and 4-octyloxybenzoic acid further revealed that all the observed bands are due to intramolecular interaction. However, the 4-hexylbenzoic acid spectrum has one apparently intermolecular band. This work addresses the limitation in the intermediate terahertz spectroscopic studies of liquid crystals and furthermore emphasizes the robustness of Fourier Transform Infrared technique in identifying materials with similar attributes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spectroscopy Letters
Spectroscopy Letters 物理-光谱学
CiteScore
2.90
自引率
5.90%
发文量
50
审稿时长
1.3 months
期刊介绍: Spectroscopy Letters provides vital coverage of all types of spectroscopy across all the disciplines where they are used—including novel work in fundamental spectroscopy, applications, diagnostics and instrumentation. The audience is intended to be all practicing spectroscopists across all scientific (and some engineering) disciplines, including: physics, chemistry, biology, instrumentation science, and pharmaceutical science.
期刊最新文献
Spectroscopic, computational, docking, and cytotoxicity investigations of 5-chloro-2-mercaptobenzimidazole as an anti-breast cancer medication Ultraviolet visible spectral water chemical oxygen demand detection method based on two deep neural network model Two-dimensional low-field nuclear magnetic resonance approach for the detection of metabolic syndrome in human serum Molecular structure, light harvesting effect, electronic, topological behavior and molecular docking and molecular dynamic simulation of (Z)-1-(4-chlorophenyl)-3-(3-(E)-3-(4-chlorophenyl)-3-oxo prop-1-en-1-yl)-phenyl) prop-2-en-1-one—in-vitro assay Sub-ppm-level detection of nanoplastics using au nanograting and application to disposable plasticware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1