Jianchang Huang , Weijie Chen , Qiyao Wang , Yuanxing Zhang , Qin Liu , Dahai Yang
{"title":"大菱鲆细菌感染过程中全长转录组的Iso-Seq组装与功能注释","authors":"Jianchang Huang , Weijie Chen , Qiyao Wang , Yuanxing Zhang , Qin Liu , Dahai Yang","doi":"10.1016/j.margen.2022.100954","DOIUrl":null,"url":null,"abstract":"<div><p>Turbot (<em>Scophthalmus maximus</em>) is a flatfish, which is not only important in mariculture worldwide with the unique characteristic of body asymmetry, but also as an economically important species in aquaculture. Herein, we performed the first full-length transcriptome sequencing of turbot during the bacterial infection. A total of 307.1 Gb raw reads were obtained and processed with Iso-Seq, generating 187,509 high-quality redundant transcripts with an average length of 3005 base pairs. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis identified 81.5% complete BUSCOs and only 1.7% fragmented BUSCOs, suggesting a transcript structural completeness and functional diversity of this transcriptome. Moreover, the redundant transcripts were collapsed and compared to ENSEMBL reference with Cupcake and SQANTI3. Among 60,476 collapsed transcripts, we identified 12,059 annotated and 1684 novel genes. 42,956 (71.1%) transcripts provided new evidence for splice junctions identification. Furthermore, the untranslated region (UTR) identification was also benefited from the transcriptome. The open read frames prediction was conducted with PASApipeline. 42,118 transcripts were assigned with known function by aligning against Swiss-Prot or functional domain prediction. Taken together, the full-length transcriptome built in this study could provide important resources for immunologic research on turbot.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"63 ","pages":"Article 100954"},"PeriodicalIF":1.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Iso-Seq assembly and functional annotation of full-length transcriptome of turbot (Scophthalmus maximus) during bacterial infection\",\"authors\":\"Jianchang Huang , Weijie Chen , Qiyao Wang , Yuanxing Zhang , Qin Liu , Dahai Yang\",\"doi\":\"10.1016/j.margen.2022.100954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Turbot (<em>Scophthalmus maximus</em>) is a flatfish, which is not only important in mariculture worldwide with the unique characteristic of body asymmetry, but also as an economically important species in aquaculture. Herein, we performed the first full-length transcriptome sequencing of turbot during the bacterial infection. A total of 307.1 Gb raw reads were obtained and processed with Iso-Seq, generating 187,509 high-quality redundant transcripts with an average length of 3005 base pairs. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis identified 81.5% complete BUSCOs and only 1.7% fragmented BUSCOs, suggesting a transcript structural completeness and functional diversity of this transcriptome. Moreover, the redundant transcripts were collapsed and compared to ENSEMBL reference with Cupcake and SQANTI3. Among 60,476 collapsed transcripts, we identified 12,059 annotated and 1684 novel genes. 42,956 (71.1%) transcripts provided new evidence for splice junctions identification. Furthermore, the untranslated region (UTR) identification was also benefited from the transcriptome. The open read frames prediction was conducted with PASApipeline. 42,118 transcripts were assigned with known function by aligning against Swiss-Prot or functional domain prediction. Taken together, the full-length transcriptome built in this study could provide important resources for immunologic research on turbot.</p></div>\",\"PeriodicalId\":18321,\"journal\":{\"name\":\"Marine genomics\",\"volume\":\"63 \",\"pages\":\"Article 100954\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778722000320\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778722000320","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Iso-Seq assembly and functional annotation of full-length transcriptome of turbot (Scophthalmus maximus) during bacterial infection
Turbot (Scophthalmus maximus) is a flatfish, which is not only important in mariculture worldwide with the unique characteristic of body asymmetry, but also as an economically important species in aquaculture. Herein, we performed the first full-length transcriptome sequencing of turbot during the bacterial infection. A total of 307.1 Gb raw reads were obtained and processed with Iso-Seq, generating 187,509 high-quality redundant transcripts with an average length of 3005 base pairs. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis identified 81.5% complete BUSCOs and only 1.7% fragmented BUSCOs, suggesting a transcript structural completeness and functional diversity of this transcriptome. Moreover, the redundant transcripts were collapsed and compared to ENSEMBL reference with Cupcake and SQANTI3. Among 60,476 collapsed transcripts, we identified 12,059 annotated and 1684 novel genes. 42,956 (71.1%) transcripts provided new evidence for splice junctions identification. Furthermore, the untranslated region (UTR) identification was also benefited from the transcriptome. The open read frames prediction was conducted with PASApipeline. 42,118 transcripts were assigned with known function by aligning against Swiss-Prot or functional domain prediction. Taken together, the full-length transcriptome built in this study could provide important resources for immunologic research on turbot.
期刊介绍:
The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include:
• Population genomics and ecology
• Evolutionary and developmental genomics
• Comparative genomics
• Metagenomics
• Environmental genomics
• Systems biology
More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.