铝合金激光焊接不同平面组织演变的研究

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Laser Applications Pub Date : 2023-08-01 DOI:10.2351/7.0001129
Yuewei Ai, Shibo Han, Yachao Yan
{"title":"铝合金激光焊接不同平面组织演变的研究","authors":"Yuewei Ai, Shibo Han, Yachao Yan","doi":"10.2351/7.0001129","DOIUrl":null,"url":null,"abstract":"The solidification behavior of a molten pool is a critical factor affecting the mechanical properties of welded joints. This paper develops a multi-scale model combining the macroscale heat transfer and fluid flow model with the microscale phase field model for calculating the microstructure evolution on two different planes that are perpendicular to the thickness direction in the laser welding of the aluminum alloy. To obtain the time-varying temperature gradient (G) and solidification velocity (R) used in the simulation, a transient solidification conditions model is proposed. These models are validated by comparing the simulation results with the experimental results. The results indicate that G decreases, while R increases during solidification process. G/R decreases on both two planes, which results in the transformation of the microstructure from planar to cellular and then to the columnar grain. Additionally, it is found that the primary dendrite arm spacing of columnar grains on the lower plane is smaller, which is related to lower G−1/2R−1/4.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of microstructure evolution on different planes in laser welding of aluminum alloy\",\"authors\":\"Yuewei Ai, Shibo Han, Yachao Yan\",\"doi\":\"10.2351/7.0001129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solidification behavior of a molten pool is a critical factor affecting the mechanical properties of welded joints. This paper develops a multi-scale model combining the macroscale heat transfer and fluid flow model with the microscale phase field model for calculating the microstructure evolution on two different planes that are perpendicular to the thickness direction in the laser welding of the aluminum alloy. To obtain the time-varying temperature gradient (G) and solidification velocity (R) used in the simulation, a transient solidification conditions model is proposed. These models are validated by comparing the simulation results with the experimental results. The results indicate that G decreases, while R increases during solidification process. G/R decreases on both two planes, which results in the transformation of the microstructure from planar to cellular and then to the columnar grain. Additionally, it is found that the primary dendrite arm spacing of columnar grains on the lower plane is smaller, which is related to lower G−1/2R−1/4.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001129\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001129","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

熔池的凝固行为是影响焊接接头力学性能的关键因素。本文开发了一个将宏观传热和流体流动模型与微观相场模型相结合的多尺度模型,用于计算铝合金激光焊接中垂直于厚度方向的两个不同平面上的微观组织演变。为了获得模拟中使用的时变温度梯度(G)和凝固速度(R),提出了一个瞬态凝固条件模型。通过仿真结果与实验结果的比较,验证了这些模型的正确性。结果表明,在凝固过程中,G减小,R增大。G/R在两个平面上都降低,这导致微观结构从平面到蜂窝状再到柱状晶粒的转变。此外,还发现下平面柱状晶粒的一次枝晶臂间距较小,这与较低的G−1/2R−1/4有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of microstructure evolution on different planes in laser welding of aluminum alloy
The solidification behavior of a molten pool is a critical factor affecting the mechanical properties of welded joints. This paper develops a multi-scale model combining the macroscale heat transfer and fluid flow model with the microscale phase field model for calculating the microstructure evolution on two different planes that are perpendicular to the thickness direction in the laser welding of the aluminum alloy. To obtain the time-varying temperature gradient (G) and solidification velocity (R) used in the simulation, a transient solidification conditions model is proposed. These models are validated by comparing the simulation results with the experimental results. The results indicate that G decreases, while R increases during solidification process. G/R decreases on both two planes, which results in the transformation of the microstructure from planar to cellular and then to the columnar grain. Additionally, it is found that the primary dendrite arm spacing of columnar grains on the lower plane is smaller, which is related to lower G−1/2R−1/4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
期刊最新文献
Experimental evaluation of a WC–Co alloy layer formation process by multibeam-type laser metal deposition with blue diode lasers Texturing skin-pass rolls by high-speed laser melt injection, laser ablation, and electrolytic etching Investigating the influence of thermal behavior on microstructure during solidification in laser powder bed fusion of AlSi10Mg alloys: A phase-field analysis High-power fiber-coupled diode laser welding of 10-mm thick Inconel 617 superalloy Influence of temperature and beam size on weld track shape in laser powder bed fusion of pure copper using near-infrared laser system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1