时变沉积下的粘附动力学:机器人辅助挤压的研究

IF 3.9 Q2 ENGINEERING, INDUSTRIAL Advances in Industrial and Manufacturing Engineering Pub Date : 2022-11-01 DOI:10.1016/j.aime.2022.100101
Sean Psulkowski , Charissa Lucien , Helen Parker , Bryant Rodriguez , Dawn Yang , Tarik Dickens
{"title":"时变沉积下的粘附动力学:机器人辅助挤压的研究","authors":"Sean Psulkowski ,&nbsp;Charissa Lucien ,&nbsp;Helen Parker ,&nbsp;Bryant Rodriguez ,&nbsp;Dawn Yang ,&nbsp;Tarik Dickens","doi":"10.1016/j.aime.2022.100101","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in robotic assisted-additive manufacturing (RA-AM) have enabled rapid material extrusion-based processing with comprehensive data collection. The following study investigates the adhesion dynamics of the initial printed layer across parameters such as surface energies, stand-off heights, and extrusion speeds of up to 100 mm/s, using an applied in-situ thermal analysis technique. Observations indicate that the characteristic length parameter, <span><math><mrow><msub><mi>L</mi><mi>c</mi></msub></mrow></math></span> &lt; 0.05 mm, is adequate in anchoring the thermal melt, which adheres to the substrate when the nozzle proximity to the surface increases. Up to 100% molten area is contacting the surface prior to translation, and a final eccentricity over 0.85 has been observed. Through an analysis of variance, operational parameters of lower nozzle heights, printing speeds, and higher surface energy were statistically significant. The resultant in-situ characterization-driven data, was used to train a convolutional neural network (CNN). The model tested at an accuracy of 90.9%, and was able to distinguish between failed prints and initially adhered structures.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"5 ","pages":"Article 100101"},"PeriodicalIF":3.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912922000289/pdfft?md5=f296766b745111821c00f7c1d543f9e4&pid=1-s2.0-S2666912922000289-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Adhesion dynamics under time-varying deposition: A study on robotic assisted extrusion\",\"authors\":\"Sean Psulkowski ,&nbsp;Charissa Lucien ,&nbsp;Helen Parker ,&nbsp;Bryant Rodriguez ,&nbsp;Dawn Yang ,&nbsp;Tarik Dickens\",\"doi\":\"10.1016/j.aime.2022.100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent advances in robotic assisted-additive manufacturing (RA-AM) have enabled rapid material extrusion-based processing with comprehensive data collection. The following study investigates the adhesion dynamics of the initial printed layer across parameters such as surface energies, stand-off heights, and extrusion speeds of up to 100 mm/s, using an applied in-situ thermal analysis technique. Observations indicate that the characteristic length parameter, <span><math><mrow><msub><mi>L</mi><mi>c</mi></msub></mrow></math></span> &lt; 0.05 mm, is adequate in anchoring the thermal melt, which adheres to the substrate when the nozzle proximity to the surface increases. Up to 100% molten area is contacting the surface prior to translation, and a final eccentricity over 0.85 has been observed. Through an analysis of variance, operational parameters of lower nozzle heights, printing speeds, and higher surface energy were statistically significant. The resultant in-situ characterization-driven data, was used to train a convolutional neural network (CNN). The model tested at an accuracy of 90.9%, and was able to distinguish between failed prints and initially adhered structures.</p></div>\",\"PeriodicalId\":34573,\"journal\":{\"name\":\"Advances in Industrial and Manufacturing Engineering\",\"volume\":\"5 \",\"pages\":\"Article 100101\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666912922000289/pdfft?md5=f296766b745111821c00f7c1d543f9e4&pid=1-s2.0-S2666912922000289-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Industrial and Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666912922000289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912922000289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

机器人辅助增材制造(RA-AM)的最新进展使基于材料挤压的快速加工与全面的数据收集成为可能。下面的研究使用原位热分析技术,研究了初始打印层的粘附动力学,这些参数包括表面能、分离高度和高达100 mm/s的挤出速度。观测结果表明,特征长度参数Lc <0.05 mm,足以锚定热熔体,当喷嘴接近表面时,热熔体粘附在基材上。在平移之前,高达100%的熔融面积与表面接触,并观察到最终偏心率超过0.85。通过方差分析,低喷嘴高度、打印速度和高表面能的操作参数具有统计学意义。生成的原位表征驱动数据用于训练卷积神经网络(CNN)。该模型的测试精度为90.9%,并且能够区分失败的打印和最初粘附的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adhesion dynamics under time-varying deposition: A study on robotic assisted extrusion

Recent advances in robotic assisted-additive manufacturing (RA-AM) have enabled rapid material extrusion-based processing with comprehensive data collection. The following study investigates the adhesion dynamics of the initial printed layer across parameters such as surface energies, stand-off heights, and extrusion speeds of up to 100 mm/s, using an applied in-situ thermal analysis technique. Observations indicate that the characteristic length parameter, Lc < 0.05 mm, is adequate in anchoring the thermal melt, which adheres to the substrate when the nozzle proximity to the surface increases. Up to 100% molten area is contacting the surface prior to translation, and a final eccentricity over 0.85 has been observed. Through an analysis of variance, operational parameters of lower nozzle heights, printing speeds, and higher surface energy were statistically significant. The resultant in-situ characterization-driven data, was used to train a convolutional neural network (CNN). The model tested at an accuracy of 90.9%, and was able to distinguish between failed prints and initially adhered structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Industrial and Manufacturing Engineering
Advances in Industrial and Manufacturing Engineering Engineering-Engineering (miscellaneous)
CiteScore
6.60
自引率
0.00%
发文量
31
审稿时长
18 days
期刊最新文献
3D-printed motorcycle seats: Replicating polymer foam performance for rapid prototyping and rider comfort Manufacturing of irregular shapes through force control in incremental sheet forming with active medium Analytical criterion to prevent thermal overshoot during dynamic curing of thick composite laminates Experimental investigation on micro-EDM hybrid drilling process Impact of graphene nanoparticles on DLP-printed parts' mechanical behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1