基于纹理的潜在空间解缠算法对基于人工神经网络的果蔬分类训练数据集的增强

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY Information Processing in Agriculture Pub Date : 2023-03-01 DOI:10.1016/j.inpa.2021.09.003
Khurram Hameed, Douglas Chai, Alexander Rassau
{"title":"基于纹理的潜在空间解缠算法对基于人工神经网络的果蔬分类训练数据集的增强","authors":"Khurram Hameed,&nbsp;Douglas Chai,&nbsp;Alexander Rassau","doi":"10.1016/j.inpa.2021.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>The capability of Convolutional Neural Networks (CNNs) for sparse representation has significant application to complex tasks like Representation Learning (RL). However, labelled datasets of sufficient size for learning this representation are not easily obtainable. The unsupervised learning capability of Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) provide a promising solution to this issue through their capacity to learn representations for novel data samples and classification tasks. In this research, a texture-based latent space disentanglement technique is proposed to enhance learning of representations for novel data samples. A comparison is performed among different VAEs and GANs with the proposed approach for synthesis of new data samples. Two different VAE architectures are considered, a single layer dense VAE and a convolution based VAE, to compare the effectiveness of different architectures for learning of the representations. The GANs are selected based on the distance metric for disjoint distribution divergence estimation of complex representation learning tasks. The proposed texture-based disentanglement has been shown to provide a significant improvement for disentangling the process of representation learning by conditioning the random noise and synthesising texture rich images of fruit and vegetables.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Texture-based latent space disentanglement for enhancement of a training dataset for ANN-based classification of fruit and vegetables\",\"authors\":\"Khurram Hameed,&nbsp;Douglas Chai,&nbsp;Alexander Rassau\",\"doi\":\"10.1016/j.inpa.2021.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The capability of Convolutional Neural Networks (CNNs) for sparse representation has significant application to complex tasks like Representation Learning (RL). However, labelled datasets of sufficient size for learning this representation are not easily obtainable. The unsupervised learning capability of Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) provide a promising solution to this issue through their capacity to learn representations for novel data samples and classification tasks. In this research, a texture-based latent space disentanglement technique is proposed to enhance learning of representations for novel data samples. A comparison is performed among different VAEs and GANs with the proposed approach for synthesis of new data samples. Two different VAE architectures are considered, a single layer dense VAE and a convolution based VAE, to compare the effectiveness of different architectures for learning of the representations. The GANs are selected based on the distance metric for disjoint distribution divergence estimation of complex representation learning tasks. The proposed texture-based disentanglement has been shown to provide a significant improvement for disentangling the process of representation learning by conditioning the random noise and synthesising texture rich images of fruit and vegetables.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317321000779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

卷积神经网络(cnn)的稀疏表示能力在表示学习(RL)等复杂任务中有着重要的应用。然而,学习这种表示的足够大小的标记数据集并不容易获得。变分自编码器(VAEs)和生成对抗网络(GANs)的无监督学习能力通过学习新数据样本和分类任务的表示,为这一问题提供了一个有希望的解决方案。在本研究中,提出了一种基于纹理的潜在空间解纠缠技术,以增强对新数据样本的表示学习。用该方法合成新数据样本,对不同的vae和gan进行了比较。考虑了两种不同的VAE体系结构,单层密集VAE和基于卷积的VAE,以比较不同体系结构在学习表征方面的有效性。基于距离度量选择gan用于复杂表示学习任务的不相交分布散度估计。本文提出的基于纹理的解纠缠方法通过调节随机噪声和合成富含纹理的水果和蔬菜图像,为表征学习的解纠缠过程提供了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Texture-based latent space disentanglement for enhancement of a training dataset for ANN-based classification of fruit and vegetables

The capability of Convolutional Neural Networks (CNNs) for sparse representation has significant application to complex tasks like Representation Learning (RL). However, labelled datasets of sufficient size for learning this representation are not easily obtainable. The unsupervised learning capability of Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) provide a promising solution to this issue through their capacity to learn representations for novel data samples and classification tasks. In this research, a texture-based latent space disentanglement technique is proposed to enhance learning of representations for novel data samples. A comparison is performed among different VAEs and GANs with the proposed approach for synthesis of new data samples. Two different VAE architectures are considered, a single layer dense VAE and a convolution based VAE, to compare the effectiveness of different architectures for learning of the representations. The GANs are selected based on the distance metric for disjoint distribution divergence estimation of complex representation learning tasks. The proposed texture-based disentanglement has been shown to provide a significant improvement for disentangling the process of representation learning by conditioning the random noise and synthesising texture rich images of fruit and vegetables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
期刊最新文献
Editorial Board Disturbance rejection control method of agricultural quadrotor based on adaptive neural network Deep learning for rice leaf disease detection: A systematic literature review on emerging trends, methodologies and techniques A deep learning framework for prediction of crop yield in Australia under the impact of climate change Few-shot cow identification via meta-learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1