{"title":"基于纹理的潜在空间解缠算法对基于人工神经网络的果蔬分类训练数据集的增强","authors":"Khurram Hameed, Douglas Chai, Alexander Rassau","doi":"10.1016/j.inpa.2021.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>The capability of Convolutional Neural Networks (CNNs) for sparse representation has significant application to complex tasks like Representation Learning (RL). However, labelled datasets of sufficient size for learning this representation are not easily obtainable. The unsupervised learning capability of Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) provide a promising solution to this issue through their capacity to learn representations for novel data samples and classification tasks. In this research, a texture-based latent space disentanglement technique is proposed to enhance learning of representations for novel data samples. A comparison is performed among different VAEs and GANs with the proposed approach for synthesis of new data samples. Two different VAE architectures are considered, a single layer dense VAE and a convolution based VAE, to compare the effectiveness of different architectures for learning of the representations. The GANs are selected based on the distance metric for disjoint distribution divergence estimation of complex representation learning tasks. The proposed texture-based disentanglement has been shown to provide a significant improvement for disentangling the process of representation learning by conditioning the random noise and synthesising texture rich images of fruit and vegetables.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 1","pages":"Pages 85-105"},"PeriodicalIF":7.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Texture-based latent space disentanglement for enhancement of a training dataset for ANN-based classification of fruit and vegetables\",\"authors\":\"Khurram Hameed, Douglas Chai, Alexander Rassau\",\"doi\":\"10.1016/j.inpa.2021.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The capability of Convolutional Neural Networks (CNNs) for sparse representation has significant application to complex tasks like Representation Learning (RL). However, labelled datasets of sufficient size for learning this representation are not easily obtainable. The unsupervised learning capability of Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) provide a promising solution to this issue through their capacity to learn representations for novel data samples and classification tasks. In this research, a texture-based latent space disentanglement technique is proposed to enhance learning of representations for novel data samples. A comparison is performed among different VAEs and GANs with the proposed approach for synthesis of new data samples. Two different VAE architectures are considered, a single layer dense VAE and a convolution based VAE, to compare the effectiveness of different architectures for learning of the representations. The GANs are selected based on the distance metric for disjoint distribution divergence estimation of complex representation learning tasks. The proposed texture-based disentanglement has been shown to provide a significant improvement for disentangling the process of representation learning by conditioning the random noise and synthesising texture rich images of fruit and vegetables.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"10 1\",\"pages\":\"Pages 85-105\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317321000779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Texture-based latent space disentanglement for enhancement of a training dataset for ANN-based classification of fruit and vegetables
The capability of Convolutional Neural Networks (CNNs) for sparse representation has significant application to complex tasks like Representation Learning (RL). However, labelled datasets of sufficient size for learning this representation are not easily obtainable. The unsupervised learning capability of Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) provide a promising solution to this issue through their capacity to learn representations for novel data samples and classification tasks. In this research, a texture-based latent space disentanglement technique is proposed to enhance learning of representations for novel data samples. A comparison is performed among different VAEs and GANs with the proposed approach for synthesis of new data samples. Two different VAE architectures are considered, a single layer dense VAE and a convolution based VAE, to compare the effectiveness of different architectures for learning of the representations. The GANs are selected based on the distance metric for disjoint distribution divergence estimation of complex representation learning tasks. The proposed texture-based disentanglement has been shown to provide a significant improvement for disentangling the process of representation learning by conditioning the random noise and synthesising texture rich images of fruit and vegetables.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining