Xuyang Qi, Shuni Qian, Kebing Chen, Jun Li, Xushu Wu, Zhaoli Wang, Zi‐Wang Deng, Jie Jiang
{"title":"沿海地区日降水和风速的相关性:来自中国海岸线的证据","authors":"Xuyang Qi, Shuni Qian, Kebing Chen, Jun Li, Xushu Wu, Zhaoli Wang, Zi‐Wang Deng, Jie Jiang","doi":"10.2166/nh.2023.093","DOIUrl":null,"url":null,"abstract":"\n Rainfall and wind speed are two important meteorological variables that have a significant impact on agriculture, human health, and socio-economic development. While individual rainfall or wind events have been widely studied, little attention has been devoted to study the lead–lag relationship between rainfall and wind speed, particularly in coastal regions where strong dependence between rainfall and wind speed is expected. Taking China's coastline as the case study, this paper aims to explore the variation trends of wind speed and rainfall and reveal the relationships between rainfall events and wind speeds on days before and after rainfall occurrence, by using meteorological station data from 1960 to 2018. The results show that wind speed trended to decrease while rainfall showed a slight increase for most stations. The daily wind speed increased 2 days before rainfall occurrence and decreased after then, with the highest wind speed observed during rainfall onset regardless of rainfall amount. Moreover, heavier rainfall events are more likely to occur with higher wind speeds. The findings of this study potentially improve the understanding of the dependence of rainfall and wind speed, which could help rainfall or wind-related disaster mitigation.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dependence of daily precipitation and wind speed over coastal areas: evidence from China's coastline\",\"authors\":\"Xuyang Qi, Shuni Qian, Kebing Chen, Jun Li, Xushu Wu, Zhaoli Wang, Zi‐Wang Deng, Jie Jiang\",\"doi\":\"10.2166/nh.2023.093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rainfall and wind speed are two important meteorological variables that have a significant impact on agriculture, human health, and socio-economic development. While individual rainfall or wind events have been widely studied, little attention has been devoted to study the lead–lag relationship between rainfall and wind speed, particularly in coastal regions where strong dependence between rainfall and wind speed is expected. Taking China's coastline as the case study, this paper aims to explore the variation trends of wind speed and rainfall and reveal the relationships between rainfall events and wind speeds on days before and after rainfall occurrence, by using meteorological station data from 1960 to 2018. The results show that wind speed trended to decrease while rainfall showed a slight increase for most stations. The daily wind speed increased 2 days before rainfall occurrence and decreased after then, with the highest wind speed observed during rainfall onset regardless of rainfall amount. Moreover, heavier rainfall events are more likely to occur with higher wind speeds. The findings of this study potentially improve the understanding of the dependence of rainfall and wind speed, which could help rainfall or wind-related disaster mitigation.\",\"PeriodicalId\":55040,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2023.093\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.093","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Dependence of daily precipitation and wind speed over coastal areas: evidence from China's coastline
Rainfall and wind speed are two important meteorological variables that have a significant impact on agriculture, human health, and socio-economic development. While individual rainfall or wind events have been widely studied, little attention has been devoted to study the lead–lag relationship between rainfall and wind speed, particularly in coastal regions where strong dependence between rainfall and wind speed is expected. Taking China's coastline as the case study, this paper aims to explore the variation trends of wind speed and rainfall and reveal the relationships between rainfall events and wind speeds on days before and after rainfall occurrence, by using meteorological station data from 1960 to 2018. The results show that wind speed trended to decrease while rainfall showed a slight increase for most stations. The daily wind speed increased 2 days before rainfall occurrence and decreased after then, with the highest wind speed observed during rainfall onset regardless of rainfall amount. Moreover, heavier rainfall events are more likely to occur with higher wind speeds. The findings of this study potentially improve the understanding of the dependence of rainfall and wind speed, which could help rainfall or wind-related disaster mitigation.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.