真实统计数据下信息和lsamvy噪声对随机COVID-19流行模型的影响

IF 1.8 4区 数学 Q3 ECOLOGY Journal of Biological Dynamics Pub Date : 2022-03-26 DOI:10.1080/17513758.2022.2055172
Peijiang Liu, Lifang Huang, Anwarud Din, Xiangxiang Huang
{"title":"真实统计数据下信息和lsamvy噪声对随机COVID-19流行模型的影响","authors":"Peijiang Liu, Lifang Huang, Anwarud Din, Xiangxiang Huang","doi":"10.1080/17513758.2022.2055172","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the dynamical behaviour of a stochastic coronavirus (COVID-19) susceptible-infected-removed epidemic model with the inclusion of the influence of information intervention and Lévy noise. The existence and uniqueness of the model positive solution are proved. Then, we establish a stochastic threshold as a sufficient condition for the extinction and persistence in mean of the disease. Based on the available COVID-19 data, the parameters of the model were estimated and we fit the model with real statistics. Finally, numerical simulations are presented to support our theoretical results.","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"16 1","pages":"236 - 253"},"PeriodicalIF":1.8000,"publicationDate":"2022-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of information and Lévy noise on stochastic COVID-19 epidemic model under real statistical data\",\"authors\":\"Peijiang Liu, Lifang Huang, Anwarud Din, Xiangxiang Huang\",\"doi\":\"10.1080/17513758.2022.2055172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the dynamical behaviour of a stochastic coronavirus (COVID-19) susceptible-infected-removed epidemic model with the inclusion of the influence of information intervention and Lévy noise. The existence and uniqueness of the model positive solution are proved. Then, we establish a stochastic threshold as a sufficient condition for the extinction and persistence in mean of the disease. Based on the available COVID-19 data, the parameters of the model were estimated and we fit the model with real statistics. Finally, numerical simulations are presented to support our theoretical results.\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"16 1\",\"pages\":\"236 - 253\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2022.2055172\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2022.2055172","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了包含信息干预和lsamvy噪声影响的随机冠状病毒(COVID-19)易感-感染-去除流行病模型的动力学行为。证明了模型正解的存在唯一性。然后,我们建立了一个随机阈值作为疾病灭绝和持续的充分条件。基于现有的COVID-19数据,对模型的参数进行估计,并用实际统计量对模型进行拟合。最后,给出了数值模拟来支持理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of information and Lévy noise on stochastic COVID-19 epidemic model under real statistical data
In this paper, we consider the dynamical behaviour of a stochastic coronavirus (COVID-19) susceptible-infected-removed epidemic model with the inclusion of the influence of information intervention and Lévy noise. The existence and uniqueness of the model positive solution are proved. Then, we establish a stochastic threshold as a sufficient condition for the extinction and persistence in mean of the disease. Based on the available COVID-19 data, the parameters of the model were estimated and we fit the model with real statistics. Finally, numerical simulations are presented to support our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
期刊最新文献
Importance of pesticide and additional food in pest-predator system: a theoretical study. Computational approaches of modelling human papillomavirus transmission and prevention strategies: a systematic review. Modelling and analysis of an epidemic model with awareness caused by deaths due to fear. The dynamics of CD4+ T cell proliferation and regulation. Modeling and analysis of a multilayer solid tumour with cell physiological age and resource limitations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1