Emilija Katinaitė, Vytautas Žutautas, Aneta Bytautaitė, R. Pauliukaitė
{"title":"一种开发电化学阿特拉津传感器的新策略","authors":"Emilija Katinaitė, Vytautas Žutautas, Aneta Bytautaitė, R. Pauliukaitė","doi":"10.6001/chemija.v33i4.4804","DOIUrl":null,"url":null,"abstract":"Determination of pesticides is important for human health. Sensors are one of the best solutions because they do not require a long sample preparation and can be used not only in a laboratory. Electrochemical sensors can be easily minimised and employed for the detection of pesticides in liquid samples such as ground or wastewater. Conducting polymers have a few roles in electrochemical sensors, therefore, they can be good candidates for sensor development. Electrochemically co-polymerised folic acid and riboflavin as well as folic acid and L-lysine were employed for the detection of atrazine using square wave voltammetry. The co-polymer composition was optimised and characterised electrochemically and spectroscopically. The optimal composition of polyfolic acid and poly-L-lysine co-polymer electrosynthesised from the monomer ratio 1:10 was the best in terms of stability and sensitivity to atrazine. The best method was the square wave voltammetry showing the best sensitivity to atrazine 198 ± 1 μA/μM cm2, and the limit of detection was 14.8 nM. However, the sensitivity in tap water was significantly lower but still suitable for atrazine detection by the spike method.","PeriodicalId":9720,"journal":{"name":"Chemija","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel strategy to develop electrochemical atrazine sensor\",\"authors\":\"Emilija Katinaitė, Vytautas Žutautas, Aneta Bytautaitė, R. Pauliukaitė\",\"doi\":\"10.6001/chemija.v33i4.4804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determination of pesticides is important for human health. Sensors are one of the best solutions because they do not require a long sample preparation and can be used not only in a laboratory. Electrochemical sensors can be easily minimised and employed for the detection of pesticides in liquid samples such as ground or wastewater. Conducting polymers have a few roles in electrochemical sensors, therefore, they can be good candidates for sensor development. Electrochemically co-polymerised folic acid and riboflavin as well as folic acid and L-lysine were employed for the detection of atrazine using square wave voltammetry. The co-polymer composition was optimised and characterised electrochemically and spectroscopically. The optimal composition of polyfolic acid and poly-L-lysine co-polymer electrosynthesised from the monomer ratio 1:10 was the best in terms of stability and sensitivity to atrazine. The best method was the square wave voltammetry showing the best sensitivity to atrazine 198 ± 1 μA/μM cm2, and the limit of detection was 14.8 nM. However, the sensitivity in tap water was significantly lower but still suitable for atrazine detection by the spike method.\",\"PeriodicalId\":9720,\"journal\":{\"name\":\"Chemija\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemija\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.6001/chemija.v33i4.4804\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemija","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.6001/chemija.v33i4.4804","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel strategy to develop electrochemical atrazine sensor
Determination of pesticides is important for human health. Sensors are one of the best solutions because they do not require a long sample preparation and can be used not only in a laboratory. Electrochemical sensors can be easily minimised and employed for the detection of pesticides in liquid samples such as ground or wastewater. Conducting polymers have a few roles in electrochemical sensors, therefore, they can be good candidates for sensor development. Electrochemically co-polymerised folic acid and riboflavin as well as folic acid and L-lysine were employed for the detection of atrazine using square wave voltammetry. The co-polymer composition was optimised and characterised electrochemically and spectroscopically. The optimal composition of polyfolic acid and poly-L-lysine co-polymer electrosynthesised from the monomer ratio 1:10 was the best in terms of stability and sensitivity to atrazine. The best method was the square wave voltammetry showing the best sensitivity to atrazine 198 ± 1 μA/μM cm2, and the limit of detection was 14.8 nM. However, the sensitivity in tap water was significantly lower but still suitable for atrazine detection by the spike method.
期刊介绍:
Chemija publishes original research articles and reviews from all branches of modern chemistry, including physical, inorganic, analytical, organic, polymer chemistry, electrochemistry, and multidisciplinary approaches.