不用嘴唇吹笛子?音乐的音调在时间中迷失:对印度本土巴斯塔长笛的调查

IF 1.2 4区 工程技术 Q3 ACOUSTICS International Journal of Aeroacoustics Pub Date : 2023-01-11 DOI:10.1177/1475472X221150176
A. Karn, Ritvik Anand, Aditya Kataria, R. Donga, Naman Agarwal, V. Singh
{"title":"不用嘴唇吹笛子?音乐的音调在时间中迷失:对印度本土巴斯塔长笛的调查","authors":"A. Karn, Ritvik Anand, Aditya Kataria, R. Donga, Naman Agarwal, V. Singh","doi":"10.1177/1475472X221150176","DOIUrl":null,"url":null,"abstract":"The physics of music has been well studied and has provided the basis on which musical instruments are made, studied and characterized. Significant research has been conducted on the different kinds of musical instruments, which range from traditional instruments like the mridangas of India to the bagpipes of Scotland. In fact, a lot of research has been carried on the acoustics of different kinds of flutes as well, such as the Finnish kantele and the Indonesian Kompangs. The Indian subcontinent, the birthplace of transverse flutes and a host of other instruments, itself has a plethora of unique musical instruments that have been scientifically examined. Yet, the Bastar flutes of India have evaded the due scientific attention that they deserve owing to their unique sound generation mechanism. Quite strangely and surprisingly, these Bastar flutes are a unique genre of flutes that don’t require lips to be played, and are quite intriguing. The current research explores the aeroacoustics of a Bastar flute via experimental measurements, computational simulations and analytical formulations. The results demonstrate that the amplitude produced is directly proportional to the number of rims present. This are also responsible for producing a low-frequency, high-amplitude melodious sound. It also suggests that the underlying mechanism behind sound generation in a Bastar flute is a unique blend of edge tone and a jet tone, demonstrating a rare phenomenon not seen in traditional musical instruments. This uncommon phenomenon has the potential to unlock several new applications in the field of acoustics.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Playing flute without lips? Tones of music lost in time: An investigation of the indigenous Bastar flutes of India\",\"authors\":\"A. Karn, Ritvik Anand, Aditya Kataria, R. Donga, Naman Agarwal, V. Singh\",\"doi\":\"10.1177/1475472X221150176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The physics of music has been well studied and has provided the basis on which musical instruments are made, studied and characterized. Significant research has been conducted on the different kinds of musical instruments, which range from traditional instruments like the mridangas of India to the bagpipes of Scotland. In fact, a lot of research has been carried on the acoustics of different kinds of flutes as well, such as the Finnish kantele and the Indonesian Kompangs. The Indian subcontinent, the birthplace of transverse flutes and a host of other instruments, itself has a plethora of unique musical instruments that have been scientifically examined. Yet, the Bastar flutes of India have evaded the due scientific attention that they deserve owing to their unique sound generation mechanism. Quite strangely and surprisingly, these Bastar flutes are a unique genre of flutes that don’t require lips to be played, and are quite intriguing. The current research explores the aeroacoustics of a Bastar flute via experimental measurements, computational simulations and analytical formulations. The results demonstrate that the amplitude produced is directly proportional to the number of rims present. This are also responsible for producing a low-frequency, high-amplitude melodious sound. It also suggests that the underlying mechanism behind sound generation in a Bastar flute is a unique blend of edge tone and a jet tone, demonstrating a rare phenomenon not seen in traditional musical instruments. This uncommon phenomenon has the potential to unlock several new applications in the field of acoustics.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472X221150176\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X221150176","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

音乐物理学已经得到了很好的研究,并为乐器的制作、研究和表征提供了基础。对不同种类的乐器进行了大量研究,从印度的mridangas等传统乐器到苏格兰的风笛。事实上,人们对不同种类笛子的声学也进行了大量的研究,如芬兰的坎特尔笛子和印度尼西亚的Kompang笛子。印度次大陆是横笛和许多其他乐器的发源地,本身就有大量经过科学检验的独特乐器。然而,印度的巴斯塔长笛由于其独特的发声机制而逃避了应有的科学关注。非常奇怪和令人惊讶的是,这些巴斯塔长笛是一种独特的长笛流派,不需要演奏嘴唇,而且非常有趣。目前的研究通过实验测量、计算模拟和分析公式来探索巴斯塔长笛的空气声学。结果表明,产生的振幅与存在的轮辋数量成正比。这也是产生低频、高振幅的悦耳声音的原因。它还表明,低音笛声产生的潜在机制是边缘音和喷射音的独特融合,这是传统乐器中罕见的现象。这种不常见的现象有可能开启声学领域的几个新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Playing flute without lips? Tones of music lost in time: An investigation of the indigenous Bastar flutes of India
The physics of music has been well studied and has provided the basis on which musical instruments are made, studied and characterized. Significant research has been conducted on the different kinds of musical instruments, which range from traditional instruments like the mridangas of India to the bagpipes of Scotland. In fact, a lot of research has been carried on the acoustics of different kinds of flutes as well, such as the Finnish kantele and the Indonesian Kompangs. The Indian subcontinent, the birthplace of transverse flutes and a host of other instruments, itself has a plethora of unique musical instruments that have been scientifically examined. Yet, the Bastar flutes of India have evaded the due scientific attention that they deserve owing to their unique sound generation mechanism. Quite strangely and surprisingly, these Bastar flutes are a unique genre of flutes that don’t require lips to be played, and are quite intriguing. The current research explores the aeroacoustics of a Bastar flute via experimental measurements, computational simulations and analytical formulations. The results demonstrate that the amplitude produced is directly proportional to the number of rims present. This are also responsible for producing a low-frequency, high-amplitude melodious sound. It also suggests that the underlying mechanism behind sound generation in a Bastar flute is a unique blend of edge tone and a jet tone, demonstrating a rare phenomenon not seen in traditional musical instruments. This uncommon phenomenon has the potential to unlock several new applications in the field of acoustics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Aeroacoustics
International Journal of Aeroacoustics ACOUSTICS-ENGINEERING, AEROSPACE
CiteScore
2.10
自引率
10.00%
发文量
38
审稿时长
>12 weeks
期刊介绍: International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published. Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.
期刊最新文献
Precise acoustic drone localization and tracking via drone noise: Steered response power - phase transform around harmonics Aerodynamic and aeroacoustic characteristics of rocket sled under strong ground effect Prediction of the aerodynamic noise of an airfoil via the hybrid methods of aeroacoustics Aeroacoustic source localization using the microphone array method with application to wind turbine noise Christopher Tam: Brief history and accomplishments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1