{"title":"用于识别钢合金屏蔽腐蚀机理的电解质成分","authors":"Ingmar Bösing, J. Thöming, M. Baune","doi":"10.1155/2017/9425864","DOIUrl":null,"url":null,"abstract":"The formation and breakdown of passive layers due to pitting corrosion are a major cause of failure of metal structures. The investigation of passivation and pitting corrosion requires two different electrochemical measurements and is therefore a time consuming process. To reduce time in material characterization and to study the interactions of both mechanisms, here, a combined experiment addressing both phenomena is introduced. In the presented electrolyte the different corrosion mechanisms are distinguished and investigated by cyclic voltammograms and polarization scans. The measurements show a passive area, metastable pit growth, and pitting corrosion as well as repassivation. The pitting corrosion is separated from additional dissolution processes and the standard deviation of the corrosion potential is smaller than in other electrolytes. Both passivation and pitting corrosion can be observed in one measurement without additional corrosion attacks. The deviation between different measurements of the same steel is small; this is helpful for the screening of similar materials.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2017-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/9425864","citationCount":"10","resultStr":"{\"title\":\"Electrolyte Composition for Distinguishing Corrosion Mechanisms in Steel Alloy Screening\",\"authors\":\"Ingmar Bösing, J. Thöming, M. Baune\",\"doi\":\"10.1155/2017/9425864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formation and breakdown of passive layers due to pitting corrosion are a major cause of failure of metal structures. The investigation of passivation and pitting corrosion requires two different electrochemical measurements and is therefore a time consuming process. To reduce time in material characterization and to study the interactions of both mechanisms, here, a combined experiment addressing both phenomena is introduced. In the presented electrolyte the different corrosion mechanisms are distinguished and investigated by cyclic voltammograms and polarization scans. The measurements show a passive area, metastable pit growth, and pitting corrosion as well as repassivation. The pitting corrosion is separated from additional dissolution processes and the standard deviation of the corrosion potential is smaller than in other electrolytes. Both passivation and pitting corrosion can be observed in one measurement without additional corrosion attacks. The deviation between different measurements of the same steel is small; this is helpful for the screening of similar materials.\",\"PeriodicalId\":13893,\"journal\":{\"name\":\"International Journal of Corrosion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2017-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2017/9425864\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/9425864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/9425864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Electrolyte Composition for Distinguishing Corrosion Mechanisms in Steel Alloy Screening
The formation and breakdown of passive layers due to pitting corrosion are a major cause of failure of metal structures. The investigation of passivation and pitting corrosion requires two different electrochemical measurements and is therefore a time consuming process. To reduce time in material characterization and to study the interactions of both mechanisms, here, a combined experiment addressing both phenomena is introduced. In the presented electrolyte the different corrosion mechanisms are distinguished and investigated by cyclic voltammograms and polarization scans. The measurements show a passive area, metastable pit growth, and pitting corrosion as well as repassivation. The pitting corrosion is separated from additional dissolution processes and the standard deviation of the corrosion potential is smaller than in other electrolytes. Both passivation and pitting corrosion can be observed in one measurement without additional corrosion attacks. The deviation between different measurements of the same steel is small; this is helpful for the screening of similar materials.