登巴萨市登革热发病率的气候变化预测模型

K. Azhar, R. Marina, Athena Anwar
{"title":"登巴萨市登革热发病率的气候变化预测模型","authors":"K. Azhar, R. Marina, Athena Anwar","doi":"10.22435/hsji.v8i2.6952.","DOIUrl":null,"url":null,"abstract":"Latar belakang: Kota Denpasar di Provinsi Bali merupakan salah satu kota dengan kejadian dengue tertinggi di Indonesia. Faktor lingkungan seperti variabilitas iklim merupakan salah satu faktor yang mempengaruhi timbulnya demam berdarah. Metode : Penelitia n ini bertujuan untuk mendapatkan model prediksi kejadian dengue dengan menggunakan data sekunder iklim mingguan dan surveilans demam berdarah di Denpasar, Bali tahun 2010-2014. Data iklim diperoleh dari Badan Meteorologi, Klimatologi, dan Geofisika Indonesia (BMKG), sedangkan data kasus klinis demam berdarah diperoleh dari Sistem Kewaspadaan Dini dan Respon (SKDR), Kementerian Kesehatan RI. Analisis data menggunakan regresi linier dengan berbagai kombinasi variabel iklim dan lag time. Hasil: Hasil penelitian menunjukkan hubungan yang signifikan antara jumlah kasus demam berdarah, curah hujan, suhu, kelembaban dengan kejadian demam berdarah (p <0,05). Kejadian demam berdarah di kota Denpasar dipengaruhi oleh variabilitas iklim periode 4 minggu (at lag 4 weeks) lebih awal dan jumlah kasus demam berdarah terjadi dua minggu sebelumnya. Dengan demikian faktor iklim mempengaruhi kejadian demam berdarah secara tidak langsung. Kesimpulan: Model  prediksi  dapat  digunakan  sebagai  salah  satu  pertimbangan  peringatan  dini penyakit demam berdarah di kota Denpasar, disamping memberikan penyuluhan atau upaya edukasi kepada masyarakat tentang pencegahan demam berdarah dan eliminasi vektor. Selain itu memberikan kesempatan bagi sistem kesehatan dalam memahami dan merespon kasus dengue yang lebih baik. Kata kunci: Denpasar, Dengue, Iklim, Regresi, Lag time. Abstract Background: Denpasar city in Bali province is one of cities with the highest dengue incidence in Indonesia. Environmental factors such as climate variability is one of the factors that influence the incidence of dengue. Methods: This study aimed to obtain a predictive dengue incidence models using secondary data of weekly climate and surveillance of dengue cases in Denpasar, Bali, 2010-2014. Climate data was obtained from Indonesia Agency for Meteorological, Climatological, and Geophysical (BMKG), while  dengue clinical cases were obtained from Primary Health Care as reporting unit in Early Warning Alerts Respons System (EWARS) Ministry of Health. Data analysis was using linear regression with various combinations of climate variables and lag time. Results: The study showed significant relationship between the number of dengue cases, rainfall, temperature, humidity and the incidence of dengue (p<0.05). Incidence of dengue in Denpasar city was affected by climate variability of  4-week period (at lag 4 weeks) earlier and the number of dengue cases was from two weeks earlier. Thus climate factors affected the incidence of dengue indirectly. Conclusion: The prediction model can be used as one of the considerations on the early warning of dengue disease in Denpasar city, while providing counseling or education efforts to the community about prevention of dengue and vector elimination. It also allows sufficient time for health systems to be prepared to respond and better understanding of dengue cases. Keywords: Denpasar, Dengue, Climate, Regression, Lag time.","PeriodicalId":30666,"journal":{"name":"Health Science Journal of Indonesia","volume":"8 1","pages":"68-73"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A prediction model of Dengue incidence using climate variability in Denpasar city\",\"authors\":\"K. Azhar, R. Marina, Athena Anwar\",\"doi\":\"10.22435/hsji.v8i2.6952.\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Latar belakang: Kota Denpasar di Provinsi Bali merupakan salah satu kota dengan kejadian dengue tertinggi di Indonesia. Faktor lingkungan seperti variabilitas iklim merupakan salah satu faktor yang mempengaruhi timbulnya demam berdarah. Metode : Penelitia n ini bertujuan untuk mendapatkan model prediksi kejadian dengue dengan menggunakan data sekunder iklim mingguan dan surveilans demam berdarah di Denpasar, Bali tahun 2010-2014. Data iklim diperoleh dari Badan Meteorologi, Klimatologi, dan Geofisika Indonesia (BMKG), sedangkan data kasus klinis demam berdarah diperoleh dari Sistem Kewaspadaan Dini dan Respon (SKDR), Kementerian Kesehatan RI. Analisis data menggunakan regresi linier dengan berbagai kombinasi variabel iklim dan lag time. Hasil: Hasil penelitian menunjukkan hubungan yang signifikan antara jumlah kasus demam berdarah, curah hujan, suhu, kelembaban dengan kejadian demam berdarah (p <0,05). Kejadian demam berdarah di kota Denpasar dipengaruhi oleh variabilitas iklim periode 4 minggu (at lag 4 weeks) lebih awal dan jumlah kasus demam berdarah terjadi dua minggu sebelumnya. Dengan demikian faktor iklim mempengaruhi kejadian demam berdarah secara tidak langsung. Kesimpulan: Model  prediksi  dapat  digunakan  sebagai  salah  satu  pertimbangan  peringatan  dini penyakit demam berdarah di kota Denpasar, disamping memberikan penyuluhan atau upaya edukasi kepada masyarakat tentang pencegahan demam berdarah dan eliminasi vektor. Selain itu memberikan kesempatan bagi sistem kesehatan dalam memahami dan merespon kasus dengue yang lebih baik. Kata kunci: Denpasar, Dengue, Iklim, Regresi, Lag time. Abstract Background: Denpasar city in Bali province is one of cities with the highest dengue incidence in Indonesia. Environmental factors such as climate variability is one of the factors that influence the incidence of dengue. Methods: This study aimed to obtain a predictive dengue incidence models using secondary data of weekly climate and surveillance of dengue cases in Denpasar, Bali, 2010-2014. Climate data was obtained from Indonesia Agency for Meteorological, Climatological, and Geophysical (BMKG), while  dengue clinical cases were obtained from Primary Health Care as reporting unit in Early Warning Alerts Respons System (EWARS) Ministry of Health. Data analysis was using linear regression with various combinations of climate variables and lag time. Results: The study showed significant relationship between the number of dengue cases, rainfall, temperature, humidity and the incidence of dengue (p<0.05). Incidence of dengue in Denpasar city was affected by climate variability of  4-week period (at lag 4 weeks) earlier and the number of dengue cases was from two weeks earlier. Thus climate factors affected the incidence of dengue indirectly. Conclusion: The prediction model can be used as one of the considerations on the early warning of dengue disease in Denpasar city, while providing counseling or education efforts to the community about prevention of dengue and vector elimination. It also allows sufficient time for health systems to be prepared to respond and better understanding of dengue cases. Keywords: Denpasar, Dengue, Climate, Regression, Lag time.\",\"PeriodicalId\":30666,\"journal\":{\"name\":\"Health Science Journal of Indonesia\",\"volume\":\"8 1\",\"pages\":\"68-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Science Journal of Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22435/hsji.v8i2.6952.\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Science Journal of Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22435/hsji.v8i2.6952.","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

背景:巴厘岛登巴萨市是印尼登革热发生率最高的城市之一。环境因素,如气候变化,是影响登革热发烧的因素之一。方法:这项研究的目的是利用巴厘岛登巴萨每周的次级气候数据和登革热热监测,获得登革热病例的预测模型。气候数据来自印度尼西亚气象学(BMKG)和地球物理学(BMKG),而登革热临床病例数据来自中国卫生部门(SKDR)的早期预警和反应系统(SKDR)。数据分析使用线性回归与多种气候变量和时间延迟的组合。结果:研究表明,登革热、降雨量、温度、湿度和登革热发生率(p < 0.05)之间有显著的联系。登巴萨市的登革热事件受到4周早期气候变化的影响(4周后),两周前出现登革热病例的数量。因此,气候因素间接影响登革热的发生。结论:预测模型可以作为登巴萨市登革热疾病早期预警的考虑之一,除了为公众提供有关预防登革热和消除媒介的教育。此外,它为卫生系统提供了更好地理解和应对登革热病例的机会。关键词:登巴萨,登革,气候,回归,延迟时间。摘要背景:巴厘岛省的登巴萨市是印尼最引人注目的城市之一。环境因素是影响登革热的因素之一。方法:这项研究采用了在巴厘岛登巴萨的二零零二年-2014年的secony气候和监测登巴萨漏洞。气候数据是从印尼机构获得的气象、气候学和地理信息(BMKG),而登革热诊所则是从初级医疗保健部门报告的单位报告的。数据分析是用气候变化和时间延迟的不同组合进行线性回归。结果:研究表明,登革热cases、rainfall、温度、湿度和登革热的起源之间存在重大关系(p<0.05)。登巴市登革热的起源受到4周周期变化的影响,而登马事故的起因是两周后。气候因素影响了登革热的间接感染。结束语:在登巴市,预防登革热疾病的先见之明可能作为考虑的一部分使用,同时向社区提供有关登革热和根除疾病预防的辅导或教育工作。它还需要时间准备应对,更好地了解登革热风险。陈词滥调:牙套,登革热,气候,遗憾,延迟时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A prediction model of Dengue incidence using climate variability in Denpasar city
Latar belakang: Kota Denpasar di Provinsi Bali merupakan salah satu kota dengan kejadian dengue tertinggi di Indonesia. Faktor lingkungan seperti variabilitas iklim merupakan salah satu faktor yang mempengaruhi timbulnya demam berdarah. Metode : Penelitia n ini bertujuan untuk mendapatkan model prediksi kejadian dengue dengan menggunakan data sekunder iklim mingguan dan surveilans demam berdarah di Denpasar, Bali tahun 2010-2014. Data iklim diperoleh dari Badan Meteorologi, Klimatologi, dan Geofisika Indonesia (BMKG), sedangkan data kasus klinis demam berdarah diperoleh dari Sistem Kewaspadaan Dini dan Respon (SKDR), Kementerian Kesehatan RI. Analisis data menggunakan regresi linier dengan berbagai kombinasi variabel iklim dan lag time. Hasil: Hasil penelitian menunjukkan hubungan yang signifikan antara jumlah kasus demam berdarah, curah hujan, suhu, kelembaban dengan kejadian demam berdarah (p <0,05). Kejadian demam berdarah di kota Denpasar dipengaruhi oleh variabilitas iklim periode 4 minggu (at lag 4 weeks) lebih awal dan jumlah kasus demam berdarah terjadi dua minggu sebelumnya. Dengan demikian faktor iklim mempengaruhi kejadian demam berdarah secara tidak langsung. Kesimpulan: Model  prediksi  dapat  digunakan  sebagai  salah  satu  pertimbangan  peringatan  dini penyakit demam berdarah di kota Denpasar, disamping memberikan penyuluhan atau upaya edukasi kepada masyarakat tentang pencegahan demam berdarah dan eliminasi vektor. Selain itu memberikan kesempatan bagi sistem kesehatan dalam memahami dan merespon kasus dengue yang lebih baik. Kata kunci: Denpasar, Dengue, Iklim, Regresi, Lag time. Abstract Background: Denpasar city in Bali province is one of cities with the highest dengue incidence in Indonesia. Environmental factors such as climate variability is one of the factors that influence the incidence of dengue. Methods: This study aimed to obtain a predictive dengue incidence models using secondary data of weekly climate and surveillance of dengue cases in Denpasar, Bali, 2010-2014. Climate data was obtained from Indonesia Agency for Meteorological, Climatological, and Geophysical (BMKG), while  dengue clinical cases were obtained from Primary Health Care as reporting unit in Early Warning Alerts Respons System (EWARS) Ministry of Health. Data analysis was using linear regression with various combinations of climate variables and lag time. Results: The study showed significant relationship between the number of dengue cases, rainfall, temperature, humidity and the incidence of dengue (p<0.05). Incidence of dengue in Denpasar city was affected by climate variability of  4-week period (at lag 4 weeks) earlier and the number of dengue cases was from two weeks earlier. Thus climate factors affected the incidence of dengue indirectly. Conclusion: The prediction model can be used as one of the considerations on the early warning of dengue disease in Denpasar city, while providing counseling or education efforts to the community about prevention of dengue and vector elimination. It also allows sufficient time for health systems to be prepared to respond and better understanding of dengue cases. Keywords: Denpasar, Dengue, Climate, Regression, Lag time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
10 weeks
期刊最新文献
Intake of kidney bean (phaseolus vulgaris) extract as postpartum blues management Optimization of multiplex real-time RT-PCR for respiratory syncytial viruses detection Spatial variation of tuberculosis risk in Indonesia 2010-2019 Factors associated with measles antibody titers in children aged 12-36 months in Indonesia: an analysis of National Health Research 2013 The relationship of smoking duration, sleep disorders, and nutritional status of Indonesian adult men: data analysis of the 2014 Indonesian Family Life Surve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1