{"title":"登巴萨市登革热发病率的气候变化预测模型","authors":"K. Azhar, R. Marina, Athena Anwar","doi":"10.22435/hsji.v8i2.6952.","DOIUrl":null,"url":null,"abstract":"Latar belakang: Kota Denpasar di Provinsi Bali merupakan salah satu kota dengan kejadian dengue tertinggi di Indonesia. Faktor lingkungan seperti variabilitas iklim merupakan salah satu faktor yang mempengaruhi timbulnya demam berdarah. Metode : Penelitia n ini bertujuan untuk mendapatkan model prediksi kejadian dengue dengan menggunakan data sekunder iklim mingguan dan surveilans demam berdarah di Denpasar, Bali tahun 2010-2014. Data iklim diperoleh dari Badan Meteorologi, Klimatologi, dan Geofisika Indonesia (BMKG), sedangkan data kasus klinis demam berdarah diperoleh dari Sistem Kewaspadaan Dini dan Respon (SKDR), Kementerian Kesehatan RI. Analisis data menggunakan regresi linier dengan berbagai kombinasi variabel iklim dan lag time. Hasil: Hasil penelitian menunjukkan hubungan yang signifikan antara jumlah kasus demam berdarah, curah hujan, suhu, kelembaban dengan kejadian demam berdarah (p <0,05). Kejadian demam berdarah di kota Denpasar dipengaruhi oleh variabilitas iklim periode 4 minggu (at lag 4 weeks) lebih awal dan jumlah kasus demam berdarah terjadi dua minggu sebelumnya. Dengan demikian faktor iklim mempengaruhi kejadian demam berdarah secara tidak langsung. Kesimpulan: Model prediksi dapat digunakan sebagai salah satu pertimbangan peringatan dini penyakit demam berdarah di kota Denpasar, disamping memberikan penyuluhan atau upaya edukasi kepada masyarakat tentang pencegahan demam berdarah dan eliminasi vektor. Selain itu memberikan kesempatan bagi sistem kesehatan dalam memahami dan merespon kasus dengue yang lebih baik. Kata kunci: Denpasar, Dengue, Iklim, Regresi, Lag time. Abstract Background: Denpasar city in Bali province is one of cities with the highest dengue incidence in Indonesia. Environmental factors such as climate variability is one of the factors that influence the incidence of dengue. Methods: This study aimed to obtain a predictive dengue incidence models using secondary data of weekly climate and surveillance of dengue cases in Denpasar, Bali, 2010-2014. Climate data was obtained from Indonesia Agency for Meteorological, Climatological, and Geophysical (BMKG), while dengue clinical cases were obtained from Primary Health Care as reporting unit in Early Warning Alerts Respons System (EWARS) Ministry of Health. Data analysis was using linear regression with various combinations of climate variables and lag time. Results: The study showed significant relationship between the number of dengue cases, rainfall, temperature, humidity and the incidence of dengue (p<0.05). Incidence of dengue in Denpasar city was affected by climate variability of 4-week period (at lag 4 weeks) earlier and the number of dengue cases was from two weeks earlier. Thus climate factors affected the incidence of dengue indirectly. Conclusion: The prediction model can be used as one of the considerations on the early warning of dengue disease in Denpasar city, while providing counseling or education efforts to the community about prevention of dengue and vector elimination. It also allows sufficient time for health systems to be prepared to respond and better understanding of dengue cases. Keywords: Denpasar, Dengue, Climate, Regression, Lag time.","PeriodicalId":30666,"journal":{"name":"Health Science Journal of Indonesia","volume":"8 1","pages":"68-73"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A prediction model of Dengue incidence using climate variability in Denpasar city\",\"authors\":\"K. Azhar, R. Marina, Athena Anwar\",\"doi\":\"10.22435/hsji.v8i2.6952.\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Latar belakang: Kota Denpasar di Provinsi Bali merupakan salah satu kota dengan kejadian dengue tertinggi di Indonesia. Faktor lingkungan seperti variabilitas iklim merupakan salah satu faktor yang mempengaruhi timbulnya demam berdarah. Metode : Penelitia n ini bertujuan untuk mendapatkan model prediksi kejadian dengue dengan menggunakan data sekunder iklim mingguan dan surveilans demam berdarah di Denpasar, Bali tahun 2010-2014. Data iklim diperoleh dari Badan Meteorologi, Klimatologi, dan Geofisika Indonesia (BMKG), sedangkan data kasus klinis demam berdarah diperoleh dari Sistem Kewaspadaan Dini dan Respon (SKDR), Kementerian Kesehatan RI. Analisis data menggunakan regresi linier dengan berbagai kombinasi variabel iklim dan lag time. Hasil: Hasil penelitian menunjukkan hubungan yang signifikan antara jumlah kasus demam berdarah, curah hujan, suhu, kelembaban dengan kejadian demam berdarah (p <0,05). Kejadian demam berdarah di kota Denpasar dipengaruhi oleh variabilitas iklim periode 4 minggu (at lag 4 weeks) lebih awal dan jumlah kasus demam berdarah terjadi dua minggu sebelumnya. Dengan demikian faktor iklim mempengaruhi kejadian demam berdarah secara tidak langsung. Kesimpulan: Model prediksi dapat digunakan sebagai salah satu pertimbangan peringatan dini penyakit demam berdarah di kota Denpasar, disamping memberikan penyuluhan atau upaya edukasi kepada masyarakat tentang pencegahan demam berdarah dan eliminasi vektor. Selain itu memberikan kesempatan bagi sistem kesehatan dalam memahami dan merespon kasus dengue yang lebih baik. Kata kunci: Denpasar, Dengue, Iklim, Regresi, Lag time. Abstract Background: Denpasar city in Bali province is one of cities with the highest dengue incidence in Indonesia. Environmental factors such as climate variability is one of the factors that influence the incidence of dengue. Methods: This study aimed to obtain a predictive dengue incidence models using secondary data of weekly climate and surveillance of dengue cases in Denpasar, Bali, 2010-2014. Climate data was obtained from Indonesia Agency for Meteorological, Climatological, and Geophysical (BMKG), while dengue clinical cases were obtained from Primary Health Care as reporting unit in Early Warning Alerts Respons System (EWARS) Ministry of Health. Data analysis was using linear regression with various combinations of climate variables and lag time. Results: The study showed significant relationship between the number of dengue cases, rainfall, temperature, humidity and the incidence of dengue (p<0.05). Incidence of dengue in Denpasar city was affected by climate variability of 4-week period (at lag 4 weeks) earlier and the number of dengue cases was from two weeks earlier. Thus climate factors affected the incidence of dengue indirectly. Conclusion: The prediction model can be used as one of the considerations on the early warning of dengue disease in Denpasar city, while providing counseling or education efforts to the community about prevention of dengue and vector elimination. It also allows sufficient time for health systems to be prepared to respond and better understanding of dengue cases. Keywords: Denpasar, Dengue, Climate, Regression, Lag time.\",\"PeriodicalId\":30666,\"journal\":{\"name\":\"Health Science Journal of Indonesia\",\"volume\":\"8 1\",\"pages\":\"68-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Science Journal of Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22435/hsji.v8i2.6952.\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Science Journal of Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22435/hsji.v8i2.6952.","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A prediction model of Dengue incidence using climate variability in Denpasar city
Latar belakang: Kota Denpasar di Provinsi Bali merupakan salah satu kota dengan kejadian dengue tertinggi di Indonesia. Faktor lingkungan seperti variabilitas iklim merupakan salah satu faktor yang mempengaruhi timbulnya demam berdarah. Metode : Penelitia n ini bertujuan untuk mendapatkan model prediksi kejadian dengue dengan menggunakan data sekunder iklim mingguan dan surveilans demam berdarah di Denpasar, Bali tahun 2010-2014. Data iklim diperoleh dari Badan Meteorologi, Klimatologi, dan Geofisika Indonesia (BMKG), sedangkan data kasus klinis demam berdarah diperoleh dari Sistem Kewaspadaan Dini dan Respon (SKDR), Kementerian Kesehatan RI. Analisis data menggunakan regresi linier dengan berbagai kombinasi variabel iklim dan lag time. Hasil: Hasil penelitian menunjukkan hubungan yang signifikan antara jumlah kasus demam berdarah, curah hujan, suhu, kelembaban dengan kejadian demam berdarah (p <0,05). Kejadian demam berdarah di kota Denpasar dipengaruhi oleh variabilitas iklim periode 4 minggu (at lag 4 weeks) lebih awal dan jumlah kasus demam berdarah terjadi dua minggu sebelumnya. Dengan demikian faktor iklim mempengaruhi kejadian demam berdarah secara tidak langsung. Kesimpulan: Model prediksi dapat digunakan sebagai salah satu pertimbangan peringatan dini penyakit demam berdarah di kota Denpasar, disamping memberikan penyuluhan atau upaya edukasi kepada masyarakat tentang pencegahan demam berdarah dan eliminasi vektor. Selain itu memberikan kesempatan bagi sistem kesehatan dalam memahami dan merespon kasus dengue yang lebih baik. Kata kunci: Denpasar, Dengue, Iklim, Regresi, Lag time. Abstract Background: Denpasar city in Bali province is one of cities with the highest dengue incidence in Indonesia. Environmental factors such as climate variability is one of the factors that influence the incidence of dengue. Methods: This study aimed to obtain a predictive dengue incidence models using secondary data of weekly climate and surveillance of dengue cases in Denpasar, Bali, 2010-2014. Climate data was obtained from Indonesia Agency for Meteorological, Climatological, and Geophysical (BMKG), while dengue clinical cases were obtained from Primary Health Care as reporting unit in Early Warning Alerts Respons System (EWARS) Ministry of Health. Data analysis was using linear regression with various combinations of climate variables and lag time. Results: The study showed significant relationship between the number of dengue cases, rainfall, temperature, humidity and the incidence of dengue (p<0.05). Incidence of dengue in Denpasar city was affected by climate variability of 4-week period (at lag 4 weeks) earlier and the number of dengue cases was from two weeks earlier. Thus climate factors affected the incidence of dengue indirectly. Conclusion: The prediction model can be used as one of the considerations on the early warning of dengue disease in Denpasar city, while providing counseling or education efforts to the community about prevention of dengue and vector elimination. It also allows sufficient time for health systems to be prepared to respond and better understanding of dengue cases. Keywords: Denpasar, Dengue, Climate, Regression, Lag time.