{"title":"游客使用聊天机器人后的延续意愿:整合任务-技术契合模型和期望-确认理论","authors":"Neeraj Dhiman, M. Jamwal","doi":"10.1108/fs-10-2021-0207","DOIUrl":null,"url":null,"abstract":"\nPurpose\nDespite the proliferation of service chatbots in the tourism industry, the question on its continuance intentions among customers has largely remain unanswered. Building on an integrated framework using the task–technology fit theory (TTF) and the expectation–confirmation model (ECM), the present study aims to settle this debate by investigating the factors triggering customers to continue to use chatbots in a travel planning context.\n\n\nDesign/methodology/approach\nThe research followed a quantitative approach in which a survey of 322 chatbot users was undertaken. The model was empirically validated using the structural equation modelling approach using AMOS.\n\n\nFindings\nThe results reveal that users’ expectations are confirmed when they believe that the technological characteristics of chatbots satisfy their task-related characteristics. Simply, the results reveal a significant and direct effect of TTF on customers’ confirmation and perceived usefulness towards chatbots. Moreover, perceived usefulness and confirmation were found to positively impact customers’ satisfaction towards chatbots, in which the former exerts a relatively stronger impact. Not surprisingly, customers’ satisfaction with the artificial intelligence(AI)-based chatbots emerged as a predominant predictor of their continuance use.\n\n\nPractical implications\nThe findings have various practical ramifications for developers who must train chatbot algorithms on massive data to increase their accuracy and to answer more exhaustive inquiries, thereby generating a task–technology fit. It is recommended that service providers give consumers hassle-free service and precise answers to their inquiries to guarantee their satisfaction.\n\n\nOriginality/value\nThe present work attempted to empirically construct and evaluate the combination of the TTF model and the ECM, which is unique in the AI-based chatbots available in a tourism context. This research presents an alternate method for understanding the continuance intentions concerning AI-based service chatbots.\n","PeriodicalId":51620,"journal":{"name":"Foresight","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tourists’ post-adoption continuance intentions of chatbots: integrating task–technology fit model and expectation–confirmation theory\",\"authors\":\"Neeraj Dhiman, M. Jamwal\",\"doi\":\"10.1108/fs-10-2021-0207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nDespite the proliferation of service chatbots in the tourism industry, the question on its continuance intentions among customers has largely remain unanswered. Building on an integrated framework using the task–technology fit theory (TTF) and the expectation–confirmation model (ECM), the present study aims to settle this debate by investigating the factors triggering customers to continue to use chatbots in a travel planning context.\\n\\n\\nDesign/methodology/approach\\nThe research followed a quantitative approach in which a survey of 322 chatbot users was undertaken. The model was empirically validated using the structural equation modelling approach using AMOS.\\n\\n\\nFindings\\nThe results reveal that users’ expectations are confirmed when they believe that the technological characteristics of chatbots satisfy their task-related characteristics. Simply, the results reveal a significant and direct effect of TTF on customers’ confirmation and perceived usefulness towards chatbots. Moreover, perceived usefulness and confirmation were found to positively impact customers’ satisfaction towards chatbots, in which the former exerts a relatively stronger impact. Not surprisingly, customers’ satisfaction with the artificial intelligence(AI)-based chatbots emerged as a predominant predictor of their continuance use.\\n\\n\\nPractical implications\\nThe findings have various practical ramifications for developers who must train chatbot algorithms on massive data to increase their accuracy and to answer more exhaustive inquiries, thereby generating a task–technology fit. It is recommended that service providers give consumers hassle-free service and precise answers to their inquiries to guarantee their satisfaction.\\n\\n\\nOriginality/value\\nThe present work attempted to empirically construct and evaluate the combination of the TTF model and the ECM, which is unique in the AI-based chatbots available in a tourism context. This research presents an alternate method for understanding the continuance intentions concerning AI-based service chatbots.\\n\",\"PeriodicalId\":51620,\"journal\":{\"name\":\"Foresight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foresight\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/fs-10-2021-0207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REGIONAL & URBAN PLANNING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foresight","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/fs-10-2021-0207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REGIONAL & URBAN PLANNING","Score":null,"Total":0}
Tourists’ post-adoption continuance intentions of chatbots: integrating task–technology fit model and expectation–confirmation theory
Purpose
Despite the proliferation of service chatbots in the tourism industry, the question on its continuance intentions among customers has largely remain unanswered. Building on an integrated framework using the task–technology fit theory (TTF) and the expectation–confirmation model (ECM), the present study aims to settle this debate by investigating the factors triggering customers to continue to use chatbots in a travel planning context.
Design/methodology/approach
The research followed a quantitative approach in which a survey of 322 chatbot users was undertaken. The model was empirically validated using the structural equation modelling approach using AMOS.
Findings
The results reveal that users’ expectations are confirmed when they believe that the technological characteristics of chatbots satisfy their task-related characteristics. Simply, the results reveal a significant and direct effect of TTF on customers’ confirmation and perceived usefulness towards chatbots. Moreover, perceived usefulness and confirmation were found to positively impact customers’ satisfaction towards chatbots, in which the former exerts a relatively stronger impact. Not surprisingly, customers’ satisfaction with the artificial intelligence(AI)-based chatbots emerged as a predominant predictor of their continuance use.
Practical implications
The findings have various practical ramifications for developers who must train chatbot algorithms on massive data to increase their accuracy and to answer more exhaustive inquiries, thereby generating a task–technology fit. It is recommended that service providers give consumers hassle-free service and precise answers to their inquiries to guarantee their satisfaction.
Originality/value
The present work attempted to empirically construct and evaluate the combination of the TTF model and the ECM, which is unique in the AI-based chatbots available in a tourism context. This research presents an alternate method for understanding the continuance intentions concerning AI-based service chatbots.
期刊介绍:
■Social, political and economic science ■Sustainable development ■Horizon scanning ■Scientific and Technological Change and its implications for society and policy ■Management of Uncertainty, Complexity and Risk ■Foresight methodology, tools and techniques