在考虑附加相位限制的情况下,将地球同步卫星保持在给定的站立点

IF 1.9 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Intelligenza Artificiale Pub Date : 2021-01-22 DOI:10.15622/IA.2021.20.1.2
V. Gorbulin, E. Kotyashov, V. Chernyavskiy, N. Gruzdev
{"title":"在考虑附加相位限制的情况下,将地球同步卫星保持在给定的站立点","authors":"V. Gorbulin, E. Kotyashov, V. Chernyavskiy, N. Gruzdev","doi":"10.15622/IA.2021.20.1.2","DOIUrl":null,"url":null,"abstract":"The active lifetime of orbital facilities in the geostationary orbit (GSO), which include stationary artificial earth satellites (SAES) for various purposes, can be more than 15 years. At the same time, in modern conditions of orbital grouping increment, the number of space debris, including those on the GSO, also increases: SAES, which have finished its active lifetime and were not transferred to disposal orbit for some reasons, shards of SAES appeared from collision with meteors or accidents. This leads to the increase of probability of collisions with active SAESs. The listed factors determine the need of considering not only the problem of keeping SAESs in vicinities of position, but also the task of avoiding collisions with space debris objects (SDO), while the costs of the working fluid should not increase. \nA great attention is being paid to rational power units placing during the projection of new space shuttles, especially those with long useful lifetime. In this article, it is assumed that SESs are equipped with several correction motors, which make it possible to create control accelerations in only several directions, without changing the orientation of the SES itself. In other words, in this task it is assumed that the corrections of the parameters of the AES orbit do not affect the orientation of the SAES itself. This condition is a severe limitation in the synthesis of the SES’s control system. \nIn the considered methodological approach, the costs of the working fluid are set as a functionality from control, which are necessary to perform the next correction, after which the SAES will not have dangerous distances and approaching in projection horizon’s interval. This makes it possible to avoid situations when the decision on control is being made after the SES leaves the vicinity of the station point, and first of all, the approach to the SDO at a distance less than a liminal one. This article provides the results of modeling, which indicate the effectiveness of the proposed solutions. \nAn important advantage compared with the existing methods is the consideration of the movement of the SAES relatively not only to the stationary point, but also to several other objects located in its vicinity, both controlled and uncontrolled. Moreover, there can be any given number of objects.","PeriodicalId":42055,"journal":{"name":"Intelligenza Artificiale","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holding Geostationary Satellite at Given Standing Point, Taking into Account Additional Phase Restrictions\",\"authors\":\"V. Gorbulin, E. Kotyashov, V. Chernyavskiy, N. Gruzdev\",\"doi\":\"10.15622/IA.2021.20.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The active lifetime of orbital facilities in the geostationary orbit (GSO), which include stationary artificial earth satellites (SAES) for various purposes, can be more than 15 years. At the same time, in modern conditions of orbital grouping increment, the number of space debris, including those on the GSO, also increases: SAES, which have finished its active lifetime and were not transferred to disposal orbit for some reasons, shards of SAES appeared from collision with meteors or accidents. This leads to the increase of probability of collisions with active SAESs. The listed factors determine the need of considering not only the problem of keeping SAESs in vicinities of position, but also the task of avoiding collisions with space debris objects (SDO), while the costs of the working fluid should not increase. \\nA great attention is being paid to rational power units placing during the projection of new space shuttles, especially those with long useful lifetime. In this article, it is assumed that SESs are equipped with several correction motors, which make it possible to create control accelerations in only several directions, without changing the orientation of the SES itself. In other words, in this task it is assumed that the corrections of the parameters of the AES orbit do not affect the orientation of the SAES itself. This condition is a severe limitation in the synthesis of the SES’s control system. \\nIn the considered methodological approach, the costs of the working fluid are set as a functionality from control, which are necessary to perform the next correction, after which the SAES will not have dangerous distances and approaching in projection horizon’s interval. This makes it possible to avoid situations when the decision on control is being made after the SES leaves the vicinity of the station point, and first of all, the approach to the SDO at a distance less than a liminal one. This article provides the results of modeling, which indicate the effectiveness of the proposed solutions. \\nAn important advantage compared with the existing methods is the consideration of the movement of the SAES relatively not only to the stationary point, but also to several other objects located in its vicinity, both controlled and uncontrolled. Moreover, there can be any given number of objects.\",\"PeriodicalId\":42055,\"journal\":{\"name\":\"Intelligenza Artificiale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligenza Artificiale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15622/IA.2021.20.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligenza Artificiale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15622/IA.2021.20.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

地球静止轨道(GSO)上的轨道设施,包括各种用途的静止人造地球卫星(SAES)的有效寿命可超过15年。与此同时,在轨道分组增量的现代条件下,空间碎片的数量也在增加,包括GSO上的空间碎片数量也在增加:SAES已完成其有效寿命,由于某些原因未转移到处置轨道,SAES与流星碰撞或事故产生碎片。这导致与主动SAESs碰撞的概率增加。所列出的因素决定了不仅需要考虑将SAESs保持在位置附近的问题,还需要考虑避免与空间碎片物体(SDO)碰撞的任务,同时不应增加工作流体的成本。新型航天飞机特别是使用寿命较长的航天飞机的投运过程中,动力装置的合理放置受到了人们的高度重视。在本文中,假设SESs配备了几个校正电机,这使得有可能在几个方向上创建控制加速度,而不改变SES本身的方向。换句话说,在本任务中假定AES轨道参数的修正不影响AES本身的方向。这种情况严重限制了SES控制系统的综合。在所考虑的方法中,工作液的成本被设定为控制功能,这是执行下一次校正所必需的,之后SAES将不会有危险的距离,也不会在投影水平区间内接近。这样就可以避免在SES离开站点点附近后做出控制决策,首先是在小于阈值距离的情况下接近SDO。本文给出了建模的结果,表明了所提出的解决方案的有效性。与现有方法相比,该方法的一个重要优点是不仅考虑了SAES相对于静止点的运动,而且考虑了位于其附近的几个其他物体的运动,包括受控和非受控物体。此外,可以有任意数量的对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Holding Geostationary Satellite at Given Standing Point, Taking into Account Additional Phase Restrictions
The active lifetime of orbital facilities in the geostationary orbit (GSO), which include stationary artificial earth satellites (SAES) for various purposes, can be more than 15 years. At the same time, in modern conditions of orbital grouping increment, the number of space debris, including those on the GSO, also increases: SAES, which have finished its active lifetime and were not transferred to disposal orbit for some reasons, shards of SAES appeared from collision with meteors or accidents. This leads to the increase of probability of collisions with active SAESs. The listed factors determine the need of considering not only the problem of keeping SAESs in vicinities of position, but also the task of avoiding collisions with space debris objects (SDO), while the costs of the working fluid should not increase. A great attention is being paid to rational power units placing during the projection of new space shuttles, especially those with long useful lifetime. In this article, it is assumed that SESs are equipped with several correction motors, which make it possible to create control accelerations in only several directions, without changing the orientation of the SES itself. In other words, in this task it is assumed that the corrections of the parameters of the AES orbit do not affect the orientation of the SAES itself. This condition is a severe limitation in the synthesis of the SES’s control system. In the considered methodological approach, the costs of the working fluid are set as a functionality from control, which are necessary to perform the next correction, after which the SAES will not have dangerous distances and approaching in projection horizon’s interval. This makes it possible to avoid situations when the decision on control is being made after the SES leaves the vicinity of the station point, and first of all, the approach to the SDO at a distance less than a liminal one. This article provides the results of modeling, which indicate the effectiveness of the proposed solutions. An important advantage compared with the existing methods is the consideration of the movement of the SAES relatively not only to the stationary point, but also to several other objects located in its vicinity, both controlled and uncontrolled. Moreover, there can be any given number of objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligenza Artificiale
Intelligenza Artificiale COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
3.50
自引率
6.70%
发文量
13
期刊最新文献
Special Issue NL4AI 2022: Workshop on natural language for artificial intelligence User-centric item characteristics for personalized multimedia systems: A systematic review Combining human intelligence and machine learning for fact-checking: Towards a hybrid human-in-the-loop framework A framework for safe decision making: A convex duality approach Grounding End-to-End Pre-trained architectures for Semantic Role Labeling in multiple languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1