H. Mohamed, Shazia Ali, M. R. Ahmed, W. S. Mohamed
{"title":"zns掺杂CdS对CZTSSe太阳能电池性能影响的分析模型","authors":"H. Mohamed, Shazia Ali, M. R. Ahmed, W. S. Mohamed","doi":"10.15251/cl.2023.205.333","DOIUrl":null,"url":null,"abstract":"This study focuses on thin-film structures made of ITO, CdS, ZnS, CZTSSe, and Mo (i.e., ITO/CdS:ZnS/CZTSSe/Mo) for solar cell applications. The effect of ZnS content on the performance of this cell has been theoretically investigated. The optical losses caused by reflection at various interfaces and absorption in ITO and CdS:ZnS layers have been calculated using the current structure's experimental data. The losses due to charge carrier recombination at the front and back surfaces of the CZTSSe absorber have been calculated using the absorber layer and depletion region parameters. It was discovered that increasing the ZnS content causes more photons to enter the absorber layer, causing the short-circuit current density to increase. Under consideration of optical and recombination losses, a maximum efficiency of about 13.75%, a fill factor of 81.6%, and an open-circuit voltage of 808 mV were obtained for ZnS-content = 0.5.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analytical model for studying the role of ZnS-doped CdS on the performance of CZTSSe solar cells\",\"authors\":\"H. Mohamed, Shazia Ali, M. R. Ahmed, W. S. Mohamed\",\"doi\":\"10.15251/cl.2023.205.333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on thin-film structures made of ITO, CdS, ZnS, CZTSSe, and Mo (i.e., ITO/CdS:ZnS/CZTSSe/Mo) for solar cell applications. The effect of ZnS content on the performance of this cell has been theoretically investigated. The optical losses caused by reflection at various interfaces and absorption in ITO and CdS:ZnS layers have been calculated using the current structure's experimental data. The losses due to charge carrier recombination at the front and back surfaces of the CZTSSe absorber have been calculated using the absorber layer and depletion region parameters. It was discovered that increasing the ZnS content causes more photons to enter the absorber layer, causing the short-circuit current density to increase. Under consideration of optical and recombination losses, a maximum efficiency of about 13.75%, a fill factor of 81.6%, and an open-circuit voltage of 808 mV were obtained for ZnS-content = 0.5.\",\"PeriodicalId\":9710,\"journal\":{\"name\":\"Chalcogenide Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chalcogenide Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/cl.2023.205.333\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/cl.2023.205.333","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Analytical model for studying the role of ZnS-doped CdS on the performance of CZTSSe solar cells
This study focuses on thin-film structures made of ITO, CdS, ZnS, CZTSSe, and Mo (i.e., ITO/CdS:ZnS/CZTSSe/Mo) for solar cell applications. The effect of ZnS content on the performance of this cell has been theoretically investigated. The optical losses caused by reflection at various interfaces and absorption in ITO and CdS:ZnS layers have been calculated using the current structure's experimental data. The losses due to charge carrier recombination at the front and back surfaces of the CZTSSe absorber have been calculated using the absorber layer and depletion region parameters. It was discovered that increasing the ZnS content causes more photons to enter the absorber layer, causing the short-circuit current density to increase. Under consideration of optical and recombination losses, a maximum efficiency of about 13.75%, a fill factor of 81.6%, and an open-circuit voltage of 808 mV were obtained for ZnS-content = 0.5.
期刊介绍:
Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and
appears with twelve issues per year. The journal is open to letters, short communications and breakings news
inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in
structure, properties and applications, as well as those covering special properties in nano-structured
chalcogenides are admitted.