贝叶斯不确定性量化中贝叶斯因子的数值后验误差控制

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Bayesian Analysis Pub Date : 2021-01-01 DOI:10.1214/20-ba1255
Marcos A. Capistrán, J. Christen, M. Daza-Torres, Hugo Flores-Arguedas, J. Montesinos-López
{"title":"贝叶斯不确定性量化中贝叶斯因子的数值后验误差控制","authors":"Marcos A. Capistrán, J. Christen, M. Daza-Torres, Hugo Flores-Arguedas, J. Montesinos-López","doi":"10.1214/20-ba1255","DOIUrl":null,"url":null,"abstract":". In this paper, we address the numerical posterior error control problem for the Bayesian approach to inverse problems or recently known as Bayesian Uncertainty Quantification (UQ). We generalize the results of Capistr´an et al. (2016) to (a priori) expected Bayes factors (BF) and in a more general, infinite-dimensional setting. In this inverse problem, the unavoidable numerical approximation of the Forward Map (FM, i.e., the regressor function), arising from the numerical solution of a system of differential equations, demands error estimates of the corresponding approximate numerical posterior distribution. Our approach is to make such comparisons in the setting of Bayesian model selection and BFs. The main result of this paper is a bound on the absolute global error tolerated by the numerical solver of the FM in order to keep the BF of the numerical versus the theoretical posterior near one. For two examples, we provide a detailed analysis of the computation and implementation of the introduced bound. Furthermore, we show that the resulting numerical posterior turns out to be nearly identical from the theoretical posterior, given the control of the BF near one.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Error Control of the Numerical Posterior with Bayes Factors in Bayesian Uncertainty Quantification\",\"authors\":\"Marcos A. Capistrán, J. Christen, M. Daza-Torres, Hugo Flores-Arguedas, J. Montesinos-López\",\"doi\":\"10.1214/20-ba1255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we address the numerical posterior error control problem for the Bayesian approach to inverse problems or recently known as Bayesian Uncertainty Quantification (UQ). We generalize the results of Capistr´an et al. (2016) to (a priori) expected Bayes factors (BF) and in a more general, infinite-dimensional setting. In this inverse problem, the unavoidable numerical approximation of the Forward Map (FM, i.e., the regressor function), arising from the numerical solution of a system of differential equations, demands error estimates of the corresponding approximate numerical posterior distribution. Our approach is to make such comparisons in the setting of Bayesian model selection and BFs. The main result of this paper is a bound on the absolute global error tolerated by the numerical solver of the FM in order to keep the BF of the numerical versus the theoretical posterior near one. For two examples, we provide a detailed analysis of the computation and implementation of the introduced bound. Furthermore, we show that the resulting numerical posterior turns out to be nearly identical from the theoretical posterior, given the control of the BF near one.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/20-ba1255\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-ba1255","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

。在本文中,我们解决了反问题的贝叶斯方法或最近被称为贝叶斯不确定性量化(UQ)的数值后验误差控制问题。我们将Capistr ' an等人(2016)的结果(先验地)推广到预期的贝叶斯因子(BF),并在更一般的,无限维的设置中。在这个反问题中,由微分方程系统的数值解产生的不可避免的正向映射(FM,即回归函数)的数值逼近要求对相应的近似数值后验分布进行误差估计。我们的方法是在贝叶斯模型选择和bf的设置中进行这样的比较。本文的主要结果是为了使数值后验与理论后验的BF值接近于1,给出了FM数值解算器所能容忍的绝对全局误差的一个界。对于两个例子,我们详细分析了引入界的计算和实现。此外,我们表明,得到的数值后验结果与理论后验结果几乎相同,给定BF在1附近的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Error Control of the Numerical Posterior with Bayes Factors in Bayesian Uncertainty Quantification
. In this paper, we address the numerical posterior error control problem for the Bayesian approach to inverse problems or recently known as Bayesian Uncertainty Quantification (UQ). We generalize the results of Capistr´an et al. (2016) to (a priori) expected Bayes factors (BF) and in a more general, infinite-dimensional setting. In this inverse problem, the unavoidable numerical approximation of the Forward Map (FM, i.e., the regressor function), arising from the numerical solution of a system of differential equations, demands error estimates of the corresponding approximate numerical posterior distribution. Our approach is to make such comparisons in the setting of Bayesian model selection and BFs. The main result of this paper is a bound on the absolute global error tolerated by the numerical solver of the FM in order to keep the BF of the numerical versus the theoretical posterior near one. For two examples, we provide a detailed analysis of the computation and implementation of the introduced bound. Furthermore, we show that the resulting numerical posterior turns out to be nearly identical from the theoretical posterior, given the control of the BF near one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
期刊最新文献
Functional Concurrent Regression Mixture Models Using Spiked Ewens-Pitman Attraction Priors. How Trustworthy Is Your Tree? Bayesian Phylogenetic Effective Sample Size Through the Lens of Monte Carlo Error. A General Bayesian Functional Spatial Partitioning Method for Multiple Region Discovery Applied to Prostate Cancer MRI. Posterior Shrinkage Towards Linear Subspaces Dynamic Functional Variable Selection for Multimodal mHealth Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1