{"title":"气垫船发动机机体疲劳裂纹的研究","authors":"K. Szafran, M. Michalczyk","doi":"10.2478/fas-2021-0010","DOIUrl":null,"url":null,"abstract":"Abstract Rescue patrol hovercrafts must meet the basic condition – high reliability of use in extreme conditions. The introduction to the work shows damage to the propulsion system and the fan tunnel structure resulting from a fatigue fracture of the attachment wound to the propulsion unit hull. In this paper, the author describes some ways of improving the engine frame structure. In the first phase of the exploitation crack testing of the hovercraft frame, the probable causes of damage were determined. The necessary output data for analysis of the load course were obtained from the operating documentation. The approximate number of variable load cycles acting on the frame truss rod was determined. Using the comparative testing methods, the service life of the frame was estimated. Probable resonance frequencies of the vibrating bars in the truss were determined. Vibration tests of the power transmission assemblies were carried out, which allowed to determine the amplitudes and frequencies of free vibrations. Finally, a modification of the frame shifting the resonant frequency range was proposed. In conclusions, changes to the design and a schedule of inspections were proposed. The newly designed engine frame should have an extended service life.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2021 1","pages":"106 - 115"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Hovercraft – Fatigue Cracks in the Engine Frame\",\"authors\":\"K. Szafran, M. Michalczyk\",\"doi\":\"10.2478/fas-2021-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Rescue patrol hovercrafts must meet the basic condition – high reliability of use in extreme conditions. The introduction to the work shows damage to the propulsion system and the fan tunnel structure resulting from a fatigue fracture of the attachment wound to the propulsion unit hull. In this paper, the author describes some ways of improving the engine frame structure. In the first phase of the exploitation crack testing of the hovercraft frame, the probable causes of damage were determined. The necessary output data for analysis of the load course were obtained from the operating documentation. The approximate number of variable load cycles acting on the frame truss rod was determined. Using the comparative testing methods, the service life of the frame was estimated. Probable resonance frequencies of the vibrating bars in the truss were determined. Vibration tests of the power transmission assemblies were carried out, which allowed to determine the amplitudes and frequencies of free vibrations. Finally, a modification of the frame shifting the resonant frequency range was proposed. In conclusions, changes to the design and a schedule of inspections were proposed. The newly designed engine frame should have an extended service life.\",\"PeriodicalId\":37629,\"journal\":{\"name\":\"Fatigue of Aircraft Structures\",\"volume\":\"2021 1\",\"pages\":\"106 - 115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue of Aircraft Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fas-2021-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue of Aircraft Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fas-2021-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Research on Hovercraft – Fatigue Cracks in the Engine Frame
Abstract Rescue patrol hovercrafts must meet the basic condition – high reliability of use in extreme conditions. The introduction to the work shows damage to the propulsion system and the fan tunnel structure resulting from a fatigue fracture of the attachment wound to the propulsion unit hull. In this paper, the author describes some ways of improving the engine frame structure. In the first phase of the exploitation crack testing of the hovercraft frame, the probable causes of damage were determined. The necessary output data for analysis of the load course were obtained from the operating documentation. The approximate number of variable load cycles acting on the frame truss rod was determined. Using the comparative testing methods, the service life of the frame was estimated. Probable resonance frequencies of the vibrating bars in the truss were determined. Vibration tests of the power transmission assemblies were carried out, which allowed to determine the amplitudes and frequencies of free vibrations. Finally, a modification of the frame shifting the resonant frequency range was proposed. In conclusions, changes to the design and a schedule of inspections were proposed. The newly designed engine frame should have an extended service life.
期刊介绍:
The publication focuses on problems of aeronautical fatigue and structural integrity. The preferred topics include: full-scale fatigue testing of aircraft and aircraft structural components, fatigue of materials and structures, advanced materials and innovative structural concepts, damage tolerant design of aircraft structure, life extension and management of ageing fleets, structural health monitoring and loads, fatigue crack growth and life prediction methods, NDT inspections, airworthiness considerations.