{"title":"本体论在生命科学中的应用基于文本的资源组织","authors":"Giulia Panzarella , Pierangelo Veltri , Stefano Alcaro","doi":"10.1016/j.ailsci.2023.100059","DOIUrl":null,"url":null,"abstract":"<div><p>Ontologies are used to support access to a multitude of databases that cover domains relevant information. Heterogeneity and different semantics can be accessed by using structured texts and descriptions in a hierarchical concept definition. We are interested in Life Sciences (LS) related ontologies including components taken from molecular biology, bioinformatics, physics, chemistry, medicine and other related areas. An Ontology comprises: (i) term connections, (ii) the identification of core concepts, (iii) data management, (iv) knowledge classification and integration to collect key information. An ontology may be very useful in navigating through LS terms. This paper explores some available biomedical ontologies and frameworks. It describes the most common ontology development environments (ODE): Protégé, Topbraid Composer, Ontostudio, Fluent Editor, VocBench, Swoop and Obo-edit, to create ontologies from textual scientific resources for LS plans. It also compares ontology methodologies in terms of Usability, Scalability, Stability, Integration, Documentation and Originality.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using ontologies for life science text-based resource organization\",\"authors\":\"Giulia Panzarella , Pierangelo Veltri , Stefano Alcaro\",\"doi\":\"10.1016/j.ailsci.2023.100059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ontologies are used to support access to a multitude of databases that cover domains relevant information. Heterogeneity and different semantics can be accessed by using structured texts and descriptions in a hierarchical concept definition. We are interested in Life Sciences (LS) related ontologies including components taken from molecular biology, bioinformatics, physics, chemistry, medicine and other related areas. An Ontology comprises: (i) term connections, (ii) the identification of core concepts, (iii) data management, (iv) knowledge classification and integration to collect key information. An ontology may be very useful in navigating through LS terms. This paper explores some available biomedical ontologies and frameworks. It describes the most common ontology development environments (ODE): Protégé, Topbraid Composer, Ontostudio, Fluent Editor, VocBench, Swoop and Obo-edit, to create ontologies from textual scientific resources for LS plans. It also compares ontology methodologies in terms of Usability, Scalability, Stability, Integration, Documentation and Originality.</p></div>\",\"PeriodicalId\":72304,\"journal\":{\"name\":\"Artificial intelligence in the life sciences\",\"volume\":\"3 \",\"pages\":\"Article 100059\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in the life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266731852300003X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266731852300003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using ontologies for life science text-based resource organization
Ontologies are used to support access to a multitude of databases that cover domains relevant information. Heterogeneity and different semantics can be accessed by using structured texts and descriptions in a hierarchical concept definition. We are interested in Life Sciences (LS) related ontologies including components taken from molecular biology, bioinformatics, physics, chemistry, medicine and other related areas. An Ontology comprises: (i) term connections, (ii) the identification of core concepts, (iii) data management, (iv) knowledge classification and integration to collect key information. An ontology may be very useful in navigating through LS terms. This paper explores some available biomedical ontologies and frameworks. It describes the most common ontology development environments (ODE): Protégé, Topbraid Composer, Ontostudio, Fluent Editor, VocBench, Swoop and Obo-edit, to create ontologies from textual scientific resources for LS plans. It also compares ontology methodologies in terms of Usability, Scalability, Stability, Integration, Documentation and Originality.
Artificial intelligence in the life sciencesPharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)