{"title":"基于混合RNN特征提取的2型糖尿病患者心电信号cvd早期预测","authors":"Tamilselvan Thangaraju, O. P. Sharma","doi":"10.22201/icat.24486736e.2023.21.3.1844","DOIUrl":null,"url":null,"abstract":"Diabetes mellitus patients are at an increased risk of cardiovascular illness, and cardiovascular complications are the primary cause of morbidity. Diabetes is linked to both morbidity and mortality. Type-2 Diabetes causes a prothrombotic state that leads to acute coronary syndromes by causing endothelial damage and lowering antiaggregant factors like nitric oxide and prostacyclin, as well as increasing thrombotic substances like fibrinogen and factor VII, and suppressing fibrinolysis with factors like plasminogen activator inhibitors. The accurate identification and diagnosis of CVD (Cardio Vascular Disease) is dependent on the correct detection of the ECG signal from the heart. The ECG signal is extremely important in the early detection of cardiac problems. The ECG signal of diabetic individuals offers vital information about the heart and is one of the most important diagnostic tools used by doctors to identify cardiovascular disorders. The time gap between two consecutive QRS complexes appearing contiguous in an ECG is known as heart rate. The most appealing feature is that HRV (Heart Rate Variability) measurement is non-invasive and repeatable. A number of machine learning techniques have been proposed for the non-invasive automated identification of diabetes. This paper discusses innovative methods for analyzing electrocardiogram (ECG) signals in order to extract important diagnostic information. The ECG signal is first treated using a dual tree complex wavelet transform (DTCWT-SG) with threshold method. Subsequently, the features are extracted from detailed coefficients of DTCWT-SG filter, Eigen vectors by minimum normalization method and Rajan Transform. Main key features are extracted using these three methods. These features are classified and analyzed by different machine learning classifiers. The proposed approach was tested on DICARDIA, MIT-BIH and Physionet database and the performance analysis shows that the hybrid Recurrent Neural Network (RNN) (LSTM+GRU Gated Recurrent Units) achieves better prediction of 98.8% compared to state of art techniques.","PeriodicalId":15073,"journal":{"name":"Journal of Applied Research and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybird RNN based feature extraction for early prediction of CVDs using ECG Signals for type 2 diabetic patients\",\"authors\":\"Tamilselvan Thangaraju, O. P. Sharma\",\"doi\":\"10.22201/icat.24486736e.2023.21.3.1844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes mellitus patients are at an increased risk of cardiovascular illness, and cardiovascular complications are the primary cause of morbidity. Diabetes is linked to both morbidity and mortality. Type-2 Diabetes causes a prothrombotic state that leads to acute coronary syndromes by causing endothelial damage and lowering antiaggregant factors like nitric oxide and prostacyclin, as well as increasing thrombotic substances like fibrinogen and factor VII, and suppressing fibrinolysis with factors like plasminogen activator inhibitors. The accurate identification and diagnosis of CVD (Cardio Vascular Disease) is dependent on the correct detection of the ECG signal from the heart. The ECG signal is extremely important in the early detection of cardiac problems. The ECG signal of diabetic individuals offers vital information about the heart and is one of the most important diagnostic tools used by doctors to identify cardiovascular disorders. The time gap between two consecutive QRS complexes appearing contiguous in an ECG is known as heart rate. The most appealing feature is that HRV (Heart Rate Variability) measurement is non-invasive and repeatable. A number of machine learning techniques have been proposed for the non-invasive automated identification of diabetes. This paper discusses innovative methods for analyzing electrocardiogram (ECG) signals in order to extract important diagnostic information. The ECG signal is first treated using a dual tree complex wavelet transform (DTCWT-SG) with threshold method. Subsequently, the features are extracted from detailed coefficients of DTCWT-SG filter, Eigen vectors by minimum normalization method and Rajan Transform. Main key features are extracted using these three methods. These features are classified and analyzed by different machine learning classifiers. The proposed approach was tested on DICARDIA, MIT-BIH and Physionet database and the performance analysis shows that the hybrid Recurrent Neural Network (RNN) (LSTM+GRU Gated Recurrent Units) achieves better prediction of 98.8% compared to state of art techniques.\",\"PeriodicalId\":15073,\"journal\":{\"name\":\"Journal of Applied Research and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22201/icat.24486736e.2023.21.3.1844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/icat.24486736e.2023.21.3.1844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Hybird RNN based feature extraction for early prediction of CVDs using ECG Signals for type 2 diabetic patients
Diabetes mellitus patients are at an increased risk of cardiovascular illness, and cardiovascular complications are the primary cause of morbidity. Diabetes is linked to both morbidity and mortality. Type-2 Diabetes causes a prothrombotic state that leads to acute coronary syndromes by causing endothelial damage and lowering antiaggregant factors like nitric oxide and prostacyclin, as well as increasing thrombotic substances like fibrinogen and factor VII, and suppressing fibrinolysis with factors like plasminogen activator inhibitors. The accurate identification and diagnosis of CVD (Cardio Vascular Disease) is dependent on the correct detection of the ECG signal from the heart. The ECG signal is extremely important in the early detection of cardiac problems. The ECG signal of diabetic individuals offers vital information about the heart and is one of the most important diagnostic tools used by doctors to identify cardiovascular disorders. The time gap between two consecutive QRS complexes appearing contiguous in an ECG is known as heart rate. The most appealing feature is that HRV (Heart Rate Variability) measurement is non-invasive and repeatable. A number of machine learning techniques have been proposed for the non-invasive automated identification of diabetes. This paper discusses innovative methods for analyzing electrocardiogram (ECG) signals in order to extract important diagnostic information. The ECG signal is first treated using a dual tree complex wavelet transform (DTCWT-SG) with threshold method. Subsequently, the features are extracted from detailed coefficients of DTCWT-SG filter, Eigen vectors by minimum normalization method and Rajan Transform. Main key features are extracted using these three methods. These features are classified and analyzed by different machine learning classifiers. The proposed approach was tested on DICARDIA, MIT-BIH and Physionet database and the performance analysis shows that the hybrid Recurrent Neural Network (RNN) (LSTM+GRU Gated Recurrent Units) achieves better prediction of 98.8% compared to state of art techniques.
期刊介绍:
The Journal of Applied Research and Technology (JART) is a bimonthly open access journal that publishes papers on innovative applications, development of new technologies and efficient solutions in engineering, computing and scientific research. JART publishes manuscripts describing original research, with significant results based on experimental, theoretical and numerical work.
The journal does not charge for submission, processing, publication of manuscripts or for color reproduction of photographs.
JART classifies research into the following main fields:
-Material Science:
Biomaterials, carbon, ceramics, composite, metals, polymers, thin films, functional materials and semiconductors.
-Computer Science:
Computer graphics and visualization, programming, human-computer interaction, neural networks, image processing and software engineering.
-Industrial Engineering:
Operations research, systems engineering, management science, complex systems and cybernetics applications and information technologies
-Electronic Engineering:
Solid-state physics, radio engineering, telecommunications, control systems, signal processing, power electronics, electronic devices and circuits and automation.
-Instrumentation engineering and science:
Measurement devices (pressure, temperature, flow, voltage, frequency etc.), precision engineering, medical devices, instrumentation for education (devices and software), sensor technology, mechatronics and robotics.