{"title":"底部刚性块贮水箱的动力分析","authors":"R. Adhikary, K. Mandal","doi":"10.12989/OSE.2018.8.1.057","DOIUrl":null,"url":null,"abstract":"The present paper deals with the finite element analysis of water tanks with rigid baffle. Fluid is discretized by two dimensional eight-node isoparametric elements and the governing equation is simulated by pressure based formulation to reduce the degrees of freedom in the domain. Both free vibration and force vibration analysis are carried out for different sizes and positions of block at tank bottom. The fundamental frequency depends on block height and it reduces with the increase of block height. The variation of hydrodynamic pressure on tank walls not only depends of the exciting frequency but also on the size and position of rigid block at tank bottom. The hydrodynamic pressure has higher value when the exciting frequency is equal and lower than the fundamental frequency of the water in the tank. Similarly, the hydrodynamic pressure increases with the increase of width of the block for all exciting frequencies when the block is at the centre of tank. The left and right walls of tank have experienced different hydrodynamic pressure when the block is placed at off-centre. However, the increase in hydrodynamic pressure on nearest tank wall becomes insignificant after a certain value of the distance between the wall and the rigid block.","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"8 1","pages":"57"},"PeriodicalIF":0.7000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic analysis of water storage tank with rigid block at bottom\",\"authors\":\"R. Adhikary, K. Mandal\",\"doi\":\"10.12989/OSE.2018.8.1.057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper deals with the finite element analysis of water tanks with rigid baffle. Fluid is discretized by two dimensional eight-node isoparametric elements and the governing equation is simulated by pressure based formulation to reduce the degrees of freedom in the domain. Both free vibration and force vibration analysis are carried out for different sizes and positions of block at tank bottom. The fundamental frequency depends on block height and it reduces with the increase of block height. The variation of hydrodynamic pressure on tank walls not only depends of the exciting frequency but also on the size and position of rigid block at tank bottom. The hydrodynamic pressure has higher value when the exciting frequency is equal and lower than the fundamental frequency of the water in the tank. Similarly, the hydrodynamic pressure increases with the increase of width of the block for all exciting frequencies when the block is at the centre of tank. The left and right walls of tank have experienced different hydrodynamic pressure when the block is placed at off-centre. However, the increase in hydrodynamic pressure on nearest tank wall becomes insignificant after a certain value of the distance between the wall and the rigid block.\",\"PeriodicalId\":44219,\"journal\":{\"name\":\"Ocean Systems Engineering-An International Journal\",\"volume\":\"8 1\",\"pages\":\"57\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Systems Engineering-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/OSE.2018.8.1.057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2018.8.1.057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Dynamic analysis of water storage tank with rigid block at bottom
The present paper deals with the finite element analysis of water tanks with rigid baffle. Fluid is discretized by two dimensional eight-node isoparametric elements and the governing equation is simulated by pressure based formulation to reduce the degrees of freedom in the domain. Both free vibration and force vibration analysis are carried out for different sizes and positions of block at tank bottom. The fundamental frequency depends on block height and it reduces with the increase of block height. The variation of hydrodynamic pressure on tank walls not only depends of the exciting frequency but also on the size and position of rigid block at tank bottom. The hydrodynamic pressure has higher value when the exciting frequency is equal and lower than the fundamental frequency of the water in the tank. Similarly, the hydrodynamic pressure increases with the increase of width of the block for all exciting frequencies when the block is at the centre of tank. The left and right walls of tank have experienced different hydrodynamic pressure when the block is placed at off-centre. However, the increase in hydrodynamic pressure on nearest tank wall becomes insignificant after a certain value of the distance between the wall and the rigid block.
期刊介绍:
The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.