ACP1000核反应堆不确定动态的分数阶滑模自适应模糊切换控制器设计

Arshad H. Malik, Aftab A. Memon, Feroza Arshad
{"title":"ACP1000核反应堆不确定动态的分数阶滑模自适应模糊切换控制器设计","authors":"Arshad H. Malik, Aftab A. Memon, Feroza Arshad","doi":"10.53560/ppasa(59-2)760","DOIUrl":null,"url":null,"abstract":"Advanced Chinese Pressurized Water Reactor (ACP1000) is a third generation load following nuclear reactor. ACP1000 is designed to control the reactor power by a sophisticated control rod mechanism under the base load normal operation of a nuclear power plant in Mode-G. To extend the normal operation of ACP1000 for load following condition, boron adjustment control is used in manual configuration. In this research work, model based two new controllers are designed for ACP1000 reactor dynamics. A nonlinear two-point reactor kinetics model is developed for two halves of the reactor core designated as top and bottom of reactor core. Reactor feedbacks model for two-point reactor kinetics model is developed with fuel temperature, moderator temperature, Xenon concentration, G-Bank control rod position, R-Bank control rod position and boron concentration feedbacks under normal operation of ACP1000. Two problems of the large reactor core of ACP1000 are Xenon oscillations and axial offset in core power distribution. To address these problems, two new controllers are designed for normal load following operation of ACP1000. One controller is designed to replace G1-Bank and R-Bank in Mode-G for reactor power control. The second controller is designed to replace G2-Bank in Mode-G for reactivity control and axial power distribution control. Originally, both reactor coolant average temperature controller and reactor power controller were adaptive controllers. Therefore, both new controllers are designed based on an optimized sliding algorithm using a dedicated fractional order sliding mode control oriented adaptive fuzzy logic control (FO-SMC-AFLC) synthesis scheme. The performance of the proposed closed loop controllers is evaluated for design step and ramp power transients. Both proposed controllers are validated against benchmark results reported in Preliminary Safety Analysis Report (PSAR) of ACP1000. The novel control design scheme is proved satisfactory for normal load following operation of ACP1000, and all the results are found well within design limits.","PeriodicalId":36961,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of Fractional Order Sliding Mode Adaptive Fuzzy Switching Controllers for Uncertain ACP1000 Nuclear Reactor Dynamics\",\"authors\":\"Arshad H. Malik, Aftab A. Memon, Feroza Arshad\",\"doi\":\"10.53560/ppasa(59-2)760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced Chinese Pressurized Water Reactor (ACP1000) is a third generation load following nuclear reactor. ACP1000 is designed to control the reactor power by a sophisticated control rod mechanism under the base load normal operation of a nuclear power plant in Mode-G. To extend the normal operation of ACP1000 for load following condition, boron adjustment control is used in manual configuration. In this research work, model based two new controllers are designed for ACP1000 reactor dynamics. A nonlinear two-point reactor kinetics model is developed for two halves of the reactor core designated as top and bottom of reactor core. Reactor feedbacks model for two-point reactor kinetics model is developed with fuel temperature, moderator temperature, Xenon concentration, G-Bank control rod position, R-Bank control rod position and boron concentration feedbacks under normal operation of ACP1000. Two problems of the large reactor core of ACP1000 are Xenon oscillations and axial offset in core power distribution. To address these problems, two new controllers are designed for normal load following operation of ACP1000. One controller is designed to replace G1-Bank and R-Bank in Mode-G for reactor power control. The second controller is designed to replace G2-Bank in Mode-G for reactivity control and axial power distribution control. Originally, both reactor coolant average temperature controller and reactor power controller were adaptive controllers. Therefore, both new controllers are designed based on an optimized sliding algorithm using a dedicated fractional order sliding mode control oriented adaptive fuzzy logic control (FO-SMC-AFLC) synthesis scheme. The performance of the proposed closed loop controllers is evaluated for design step and ramp power transients. Both proposed controllers are validated against benchmark results reported in Preliminary Safety Analysis Report (PSAR) of ACP1000. The novel control design scheme is proved satisfactory for normal load following operation of ACP1000, and all the results are found well within design limits.\",\"PeriodicalId\":36961,\"journal\":{\"name\":\"Proceedings of the Pakistan Academy of Sciences: Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Pakistan Academy of Sciences: Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53560/ppasa(59-2)760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(59-2)760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

摘要

中国先进压水堆(ACP1000)是第三代核电机组。ACP1000的设计目的是通过复杂的控制棒机构控制反应堆功率,在核电厂基本负荷正常运行的模式g下。为了延长ACP1000在负荷跟随工况下的正常运行,在手动配置中采用硼调节控制。在本研究中,设计了两种基于模型的ACP1000反应堆动力学控制器。建立了堆芯上下两半的非线性两点动力学模型。在ACP1000正常运行情况下,建立了燃料温度、慢化剂温度、氙浓度、G-Bank控制棒位置、R-Bank控制棒位置和硼浓度反馈的两点反应堆动力学模型的反应堆反馈模型。ACP1000大型堆芯存在的两个问题是氙振荡和堆芯功率分布的轴向偏移。为了解决这些问题,ACP1000运行后设计了两个新的正常负载控制器。设计了一个控制器,用于取代G1-Bank和R-Bank在模式g中的功率控制。第二个控制器设计用于取代G2-Bank在模式g中的反应性控制和轴向功率分配控制。最初,反应堆冷却剂平均温度控制器和反应堆功率控制器都是自适应控制器。因此,这两种新的控制器都是基于一种优化的滑动算法设计的,采用了专门的面向分数阶滑模控制的自适应模糊逻辑控制(FO-SMC-AFLC)综合方案。针对设计的阶跃和斜坡功率暂态,对所提出的闭环控制器的性能进行了评估。根据ACP1000的初步安全分析报告(PSAR)中报告的基准结果验证了两种建议的控制器。ACP1000运行后,新的控制方案满足正常负荷要求,控制结果均在设计范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Fractional Order Sliding Mode Adaptive Fuzzy Switching Controllers for Uncertain ACP1000 Nuclear Reactor Dynamics
Advanced Chinese Pressurized Water Reactor (ACP1000) is a third generation load following nuclear reactor. ACP1000 is designed to control the reactor power by a sophisticated control rod mechanism under the base load normal operation of a nuclear power plant in Mode-G. To extend the normal operation of ACP1000 for load following condition, boron adjustment control is used in manual configuration. In this research work, model based two new controllers are designed for ACP1000 reactor dynamics. A nonlinear two-point reactor kinetics model is developed for two halves of the reactor core designated as top and bottom of reactor core. Reactor feedbacks model for two-point reactor kinetics model is developed with fuel temperature, moderator temperature, Xenon concentration, G-Bank control rod position, R-Bank control rod position and boron concentration feedbacks under normal operation of ACP1000. Two problems of the large reactor core of ACP1000 are Xenon oscillations and axial offset in core power distribution. To address these problems, two new controllers are designed for normal load following operation of ACP1000. One controller is designed to replace G1-Bank and R-Bank in Mode-G for reactor power control. The second controller is designed to replace G2-Bank in Mode-G for reactivity control and axial power distribution control. Originally, both reactor coolant average temperature controller and reactor power controller were adaptive controllers. Therefore, both new controllers are designed based on an optimized sliding algorithm using a dedicated fractional order sliding mode control oriented adaptive fuzzy logic control (FO-SMC-AFLC) synthesis scheme. The performance of the proposed closed loop controllers is evaluated for design step and ramp power transients. Both proposed controllers are validated against benchmark results reported in Preliminary Safety Analysis Report (PSAR) of ACP1000. The novel control design scheme is proved satisfactory for normal load following operation of ACP1000, and all the results are found well within design limits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Pakistan Academy of Sciences: Part A
Proceedings of the Pakistan Academy of Sciences: Part A Computer Science-Computer Science (all)
CiteScore
0.70
自引率
0.00%
发文量
15
期刊最新文献
Practical Analysis of Tap Water Dissolved Solids Efficient Reduction Acoustical Analysis of Insertion Losses of Ceiling Materials Blockchain in Healthcare: A Comprehensive Survey of Implementations and a Secure Model Proposal Design and Development of Neutronics and Thermal Hydraulics Modeling Code for ACP1000 Nuclear Reactor Dynamics in LabVIEW Quantum Computer Architecture: A Quantum Circuit-Based Approach Towards Quantum Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1