UG2暗礁含弱蚀变层的Bord和矿柱设计

IF 0.9 4区 材料科学 Q3 Materials Science Journal of The South African Institute of Mining and Metallurgy Pub Date : 2023-07-13 DOI:10.17159/2411-9717/2482/2023
P. M. Couto, D. Malan
{"title":"UG2暗礁含弱蚀变层的Bord和矿柱设计","authors":"P. M. Couto, D. Malan","doi":"10.17159/2411-9717/2482/2023","DOIUrl":null,"url":null,"abstract":"We propose a layout design for the UG2 Reef where weak geological alteration layers are present. The collapse of the Everest platinum mine in South Africa indicated that these layers substantially weaken the pillars. The popular Hedley and Grant pillar strength formula cannot be used where these alteration layers are present. Underground investigations at Everest mine and numerical modelling of the layout were conducted using the TEXAN code and a limit equilibrium model. Simulations of a collapsed area and an intact area allowed for a preliminary calibration of the model. This was subsequently used to explore modified layouts for these ground conditions. An alternative is to compartmentalize the blocks of ore using barrier pillars. The numerical modelling predicted that the barrier pillars appear to remain stable even in the case of large-scale collapses, provided their width exceeds 25 m. Main access routes into the mine can be protected by a double row of pillars at least 15 m wide to provide a safe travelling way. As a cautionary note, these conclusions are based on the model calibration and this needs to be refined in future. Calibration of the limit equilibrium model remains a challenge owing to the large number of parameters involved.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bord-and-pillar design for the UG2 Reef containing weak alteration layers\",\"authors\":\"P. M. Couto, D. Malan\",\"doi\":\"10.17159/2411-9717/2482/2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a layout design for the UG2 Reef where weak geological alteration layers are present. The collapse of the Everest platinum mine in South Africa indicated that these layers substantially weaken the pillars. The popular Hedley and Grant pillar strength formula cannot be used where these alteration layers are present. Underground investigations at Everest mine and numerical modelling of the layout were conducted using the TEXAN code and a limit equilibrium model. Simulations of a collapsed area and an intact area allowed for a preliminary calibration of the model. This was subsequently used to explore modified layouts for these ground conditions. An alternative is to compartmentalize the blocks of ore using barrier pillars. The numerical modelling predicted that the barrier pillars appear to remain stable even in the case of large-scale collapses, provided their width exceeds 25 m. Main access routes into the mine can be protected by a double row of pillars at least 15 m wide to provide a safe travelling way. As a cautionary note, these conclusions are based on the model calibration and this needs to be refined in future. Calibration of the limit equilibrium model remains a challenge owing to the large number of parameters involved.\",\"PeriodicalId\":17492,\"journal\":{\"name\":\"Journal of The South African Institute of Mining and Metallurgy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The South African Institute of Mining and Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17159/2411-9717/2482/2023\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The South African Institute of Mining and Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17159/2411-9717/2482/2023","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了UG2暗礁的布局设计,该暗礁存在薄弱的地质蚀变层。南非珠穆朗玛峰铂矿的坍塌表明,这些地层大大削弱了矿柱。在存在这些蚀变层的情况下,不能使用流行的Hedley和Grant矿柱强度公式。使用德克萨斯州代码和极限平衡模型对Everest矿山进行了地下调查,并对布局进行了数值建模。对坍塌区域和完整区域的模拟允许对模型进行初步校准。这随后被用于探索针对这些地面条件的修改布局。另一种选择是使用障壁柱来划分矿石块。数值模型预测,即使在大规模坍塌的情况下,只要其宽度超过25米,屏障矿柱似乎也会保持稳定。进入矿井的主要通道可以由至少15米宽的双排矿柱保护,以提供安全的行进方式。值得注意的是,这些结论是基于模型校准的,这需要在未来进行改进。由于涉及大量参数,校准极限平衡模型仍然是一个挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bord-and-pillar design for the UG2 Reef containing weak alteration layers
We propose a layout design for the UG2 Reef where weak geological alteration layers are present. The collapse of the Everest platinum mine in South Africa indicated that these layers substantially weaken the pillars. The popular Hedley and Grant pillar strength formula cannot be used where these alteration layers are present. Underground investigations at Everest mine and numerical modelling of the layout were conducted using the TEXAN code and a limit equilibrium model. Simulations of a collapsed area and an intact area allowed for a preliminary calibration of the model. This was subsequently used to explore modified layouts for these ground conditions. An alternative is to compartmentalize the blocks of ore using barrier pillars. The numerical modelling predicted that the barrier pillars appear to remain stable even in the case of large-scale collapses, provided their width exceeds 25 m. Main access routes into the mine can be protected by a double row of pillars at least 15 m wide to provide a safe travelling way. As a cautionary note, these conclusions are based on the model calibration and this needs to be refined in future. Calibration of the limit equilibrium model remains a challenge owing to the large number of parameters involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
61
审稿时长
4-8 weeks
期刊介绍: The Journal serves as a medium for the publication of high quality scientific papers. This requires that the papers that are submitted for publication are properly and fairly refereed and edited. This process will maintain the high quality of the presentation of the paper and ensure that the technical content is in line with the accepted norms of scientific integrity.
期刊最新文献
A study of different grinding aids for low-energy cement clinker production The needle penetration index for estimating the physico-mechanical properties of pyroclastic rocks Energy efficiency in the South African mining sector: A case study at a coal mine in Mpumalanga Optimization of shape factor by the response surface method, and the effect on sphalerite flotation recovery Mechanical activation and physicochemical factors controlling pyrometallurgical, hydrometallurgical, and electrometallurgical processing of titanium ore: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1