{"title":"加州有害藻华监测和警报计划:协调海洋观测的成功案例","authors":"R. Kudela, C. Anderson, H. Ruhl","doi":"10.5670/oceanog.2021.supplement.02-30","DOIUrl":null,"url":null,"abstract":"of the food chain in most freshwater and marine systems and provide many positive benefits, including production of about half the oxygen on the planet and transformation of sunlight and inorganic elements into the organic material and energy that drive productive aquatic ecosystems. A subset of the phytoplankton, referred to as harmful algal bloom (HAB) species, such as the domoicacidproducing Pseudo-nitzschia, are persistent threats to coastal resources, local economies, and human and animal health throughout US waters. HABs will likely intensify in response to anthropogenic climate change, and there is an immediate need for more effective strategies for monitoring and communicating the risks of HABs to human and ecosystem health. The ocean science community has developed several novel sensors and methods for monitoring and predicting this diversity of HAB events. These include the Imaging FlowCytobot (IFCB) and various biophysical modeling systems optimized for HAB prediction. Research efforts funded by agencies such as California Sea Grant and the NOAA competitive HAB programs have resulted in advances in understanding and monitoring HABs in California and elsewhere, but outcomes were necessarily focused on specific regions, organisms, and impacts. California HAB researchers, stakeholders, and monitoring programs identified a needed statewide capacity that encompasses existing and emerging HAB issues and more effectively leverages new technologies in a coordinated manner. This led to development of the California Harmful Algal Bloom Monitoring and Alert Program (Cal-HABMAP) with an ambitious set of goals, including studies to normalize the diverse methodologies used in HAB research and monitoring, development of an economic analysis of resources along the California coast and the potential impact of HABs on these resources, and design and development of an integrated network of observations and models that are accessible to all HAB stakeholders. The California Harmful Algal Bloom Monitoring and Alert Program: A Success Story for Coordinated Ocean Observing","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The California Harmful Algal Bloom Monitoring and Alert Program: A Success Story for Coordinated Ocean Observing\",\"authors\":\"R. Kudela, C. Anderson, H. Ruhl\",\"doi\":\"10.5670/oceanog.2021.supplement.02-30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"of the food chain in most freshwater and marine systems and provide many positive benefits, including production of about half the oxygen on the planet and transformation of sunlight and inorganic elements into the organic material and energy that drive productive aquatic ecosystems. A subset of the phytoplankton, referred to as harmful algal bloom (HAB) species, such as the domoicacidproducing Pseudo-nitzschia, are persistent threats to coastal resources, local economies, and human and animal health throughout US waters. HABs will likely intensify in response to anthropogenic climate change, and there is an immediate need for more effective strategies for monitoring and communicating the risks of HABs to human and ecosystem health. The ocean science community has developed several novel sensors and methods for monitoring and predicting this diversity of HAB events. These include the Imaging FlowCytobot (IFCB) and various biophysical modeling systems optimized for HAB prediction. Research efforts funded by agencies such as California Sea Grant and the NOAA competitive HAB programs have resulted in advances in understanding and monitoring HABs in California and elsewhere, but outcomes were necessarily focused on specific regions, organisms, and impacts. California HAB researchers, stakeholders, and monitoring programs identified a needed statewide capacity that encompasses existing and emerging HAB issues and more effectively leverages new technologies in a coordinated manner. This led to development of the California Harmful Algal Bloom Monitoring and Alert Program (Cal-HABMAP) with an ambitious set of goals, including studies to normalize the diverse methodologies used in HAB research and monitoring, development of an economic analysis of resources along the California coast and the potential impact of HABs on these resources, and design and development of an integrated network of observations and models that are accessible to all HAB stakeholders. The California Harmful Algal Bloom Monitoring and Alert Program: A Success Story for Coordinated Ocean Observing\",\"PeriodicalId\":54695,\"journal\":{\"name\":\"Oceanography\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5670/oceanog.2021.supplement.02-30\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5670/oceanog.2021.supplement.02-30","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
The California Harmful Algal Bloom Monitoring and Alert Program: A Success Story for Coordinated Ocean Observing
of the food chain in most freshwater and marine systems and provide many positive benefits, including production of about half the oxygen on the planet and transformation of sunlight and inorganic elements into the organic material and energy that drive productive aquatic ecosystems. A subset of the phytoplankton, referred to as harmful algal bloom (HAB) species, such as the domoicacidproducing Pseudo-nitzschia, are persistent threats to coastal resources, local economies, and human and animal health throughout US waters. HABs will likely intensify in response to anthropogenic climate change, and there is an immediate need for more effective strategies for monitoring and communicating the risks of HABs to human and ecosystem health. The ocean science community has developed several novel sensors and methods for monitoring and predicting this diversity of HAB events. These include the Imaging FlowCytobot (IFCB) and various biophysical modeling systems optimized for HAB prediction. Research efforts funded by agencies such as California Sea Grant and the NOAA competitive HAB programs have resulted in advances in understanding and monitoring HABs in California and elsewhere, but outcomes were necessarily focused on specific regions, organisms, and impacts. California HAB researchers, stakeholders, and monitoring programs identified a needed statewide capacity that encompasses existing and emerging HAB issues and more effectively leverages new technologies in a coordinated manner. This led to development of the California Harmful Algal Bloom Monitoring and Alert Program (Cal-HABMAP) with an ambitious set of goals, including studies to normalize the diverse methodologies used in HAB research and monitoring, development of an economic analysis of resources along the California coast and the potential impact of HABs on these resources, and design and development of an integrated network of observations and models that are accessible to all HAB stakeholders. The California Harmful Algal Bloom Monitoring and Alert Program: A Success Story for Coordinated Ocean Observing
期刊介绍:
First published in July 1988, Oceanography is the official magazine of The Oceanography Society. It contains peer-reviewed articles that chronicle all aspects of ocean science and its applications. In addition, Oceanography solicits and publishes news and information, meeting reports, hands-on laboratory exercises, career profiles, book reviews, and shorter, editor-reviewed articles that address public policy and education and how they are affected by science and technology. We encourage submission of short papers to the Breaking Waves section that describe novel approaches to multidisciplinary problems in ocean science.