{"title":"基于中心接收槽的CPV系统光学设计","authors":"I. Ullah","doi":"10.1117/1.JPE.11.035502","DOIUrl":null,"url":null,"abstract":"Abstract. Concentrating photovoltaic (CPV) systems require less area of the solar cell while achieving a high efficiency. One of the development factors in the CPV includes the irradiance uniformity over the solar cell. To overcome this issue, a parabolic trough-based optical design is proposed using two nonimaging secondary reflectors: reflective grooves and compound parabolic concentrator (CPC). The reflective grooves convert the line focus to a square shape irradiance distribution, and the CPC is used for redirecting the rays to the receiver. The proposed system delivers the concentrated light over the solar cell having a size of 30 × 30 mm2 at the center of the trough. The CPV system reduces the number of cells compared with conventional trough-based CPV systems by attaining the concentration ratio of 285. The results indicate that the system has achieved an optical efficiency of 60% at an acceptance angle of ±2 deg. The detailed optical design and raytracing simulation are presented showing that the proposed concentrator can achieve significantly higher overall concentration while maintaining irradiance uniformity.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"11 1","pages":"035502 - 035502"},"PeriodicalIF":1.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optical design of centered-receiver trough-based CPV system\",\"authors\":\"I. Ullah\",\"doi\":\"10.1117/1.JPE.11.035502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Concentrating photovoltaic (CPV) systems require less area of the solar cell while achieving a high efficiency. One of the development factors in the CPV includes the irradiance uniformity over the solar cell. To overcome this issue, a parabolic trough-based optical design is proposed using two nonimaging secondary reflectors: reflective grooves and compound parabolic concentrator (CPC). The reflective grooves convert the line focus to a square shape irradiance distribution, and the CPC is used for redirecting the rays to the receiver. The proposed system delivers the concentrated light over the solar cell having a size of 30 × 30 mm2 at the center of the trough. The CPV system reduces the number of cells compared with conventional trough-based CPV systems by attaining the concentration ratio of 285. The results indicate that the system has achieved an optical efficiency of 60% at an acceptance angle of ±2 deg. The detailed optical design and raytracing simulation are presented showing that the proposed concentrator can achieve significantly higher overall concentration while maintaining irradiance uniformity.\",\"PeriodicalId\":16781,\"journal\":{\"name\":\"Journal of Photonics for Energy\",\"volume\":\"11 1\",\"pages\":\"035502 - 035502\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photonics for Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JPE.11.035502\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.11.035502","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Optical design of centered-receiver trough-based CPV system
Abstract. Concentrating photovoltaic (CPV) systems require less area of the solar cell while achieving a high efficiency. One of the development factors in the CPV includes the irradiance uniformity over the solar cell. To overcome this issue, a parabolic trough-based optical design is proposed using two nonimaging secondary reflectors: reflective grooves and compound parabolic concentrator (CPC). The reflective grooves convert the line focus to a square shape irradiance distribution, and the CPC is used for redirecting the rays to the receiver. The proposed system delivers the concentrated light over the solar cell having a size of 30 × 30 mm2 at the center of the trough. The CPV system reduces the number of cells compared with conventional trough-based CPV systems by attaining the concentration ratio of 285. The results indicate that the system has achieved an optical efficiency of 60% at an acceptance angle of ±2 deg. The detailed optical design and raytracing simulation are presented showing that the proposed concentrator can achieve significantly higher overall concentration while maintaining irradiance uniformity.
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.